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P R E F A C E  

I gave the lecture  ser ies  "Boundary-Lqer Theory" i n  tho winter 
semester 1941/42 for the  menibere of my I n s t i t u t e  and f o r  a considerable 
number of collaborators f romthe  H e m  &ring I n s t i t u t e  for Aviation 
Research. The se r i e s  embraced a t o t a l  of sixteen two-hour lectures.  

The a i m  of the lecture  series was t o  g ive . a  survey of the  more 
recent r e s u l t s  of the thaory of viscous f l u i d s  aa fas a s  they a re  of 
importance fox* actual  applications. 
of f r i c t i o n a l  layer takss up the greatest  par t .  
volume of paterial, a complete treatment w a s  out of the  question. 
However, I took palns t o  make concepts everywhere stand out clearly.  
Moreover, eeveral important typ ica l  examples were t reated i n  de ta i l .  

Naturally the  theory of the boundary 
I n  view of the great  

Dr .  H. Hahnemann (LFA, Ins t i t u t e  for Motor Research) went t o  
considerable trouble i n  order t o  perfect &I elaboration of t h i s  lecture  
se r i e s  which I examimed and gupglemented i n  a few placee. 
M%z participated i n  the i l lus t ra t ion .  
thanks f o r  t h i s  collaboration. 

Miss Hildegard 
To both I owe my most sincere 

Sc h l i  c h t  ing 

Aerodynamisches- I n s t i t u t  
der Technischen Hochschule, Braunschweig 
October 1942. 
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Part I - Laminar Flows" 
By H. Schlichting 

First lecture (Dec. 1, 1941) 

INTRODUCTION 

Gentlemen: In the lecture series starting today I want to give 
you a survey of a field of aerodynamic6 which has for a nmiber of years 
been attracting an ever growing interest. The subJect is the theory of 
flows with friction, and, within that field, particularly the theory of 
friction layers, or boundary layers. 

As you know, a great many considerations of aerodynamics are based 

By neglect of compressibility and friction the extensive mathe- 
on the so-called ideal fluid, that ie, the frictionless incompressible 
fluid. 
matical theory of the ideal fluid (potential theory) has been made 
possible. 

rather well if the velocities are not extremely high or, more accurately, 
if they are small in comparison with sonic velocity. 
instance, the change in volume due to compressibility amounts to about 
1 percent for a velocity of 60 metere per second. 

The hypothesis of absence of friction is not satisfied by any 
actual fluid; however, it is true that most technically important fluids, 
for instance air and water, have a very emall friction coefficient and 
therefore behave in many cases edmoet like the ideal frictionless fluid. 
Many flow phenomena, in particular most cases of lift, can be treated 
satisfactorily, - that is, the calculations are in good agreement with 
the test results, -under the assumption of frictionless fluid. 
the calculations with 'frictionless flow show a very serious deficiency; 
namely, the fact, b o r n  as d'Alembert's paradox, that in frictionless 
flow each body has zero drag whereas in actual flow each body experiences 
a drag of greater or smaller magnitude. 
been unable to bridge this gap between the theory of frictionless flow 
and the experimental findings about actual flow. 
fundamental discrepancy is the viscosity which is neglected in the theory 

Zentrale f& wissenschaftliches Berichtswesen der Luftfahrtforshung des 
Generalluftzeugmsisters (ZWB) Berlin-Adlershof, pp. 1-133. 
Winter Semester 1941/42 at the Luftfahrtforschungsanstalt Hermann Gcking, 
&-amcbeig. 
two main parts, Teil A and Teil B, which have been translated as separate 
NACA Technical Memorandums, Nos. 1217 and1218, desisated part I and part 11, 
respectively- 

Actual liquids and gases satisfy the condition of incompressibility 

For air, for 

However, 

For a long time the theory has 

The cause of this 

*"Vortragsreihe "Grenzschichttheorie. ' Teil A: Laminare Str8mungen." 

Given in the 

The original language version of this report is divided into 
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of the  ideal f lu id ;  however, in  sp i t e  of i t s  extraordinary s&hless it 
is  decisive for  the course of the  flow phenomenon. As a matter of f a c t  
the  problem of drag can not be t rea ted  at  all without taking the  viscosi ty  
in to  account. 

Although t h i s  f a c t  had been known for  a long time, no proper approach 
t o  the  theoret ical  treatment of the  drag problem could be found u n t i l  the  
beginning of t he  present century. The main reason w a s  t h a t  unsurmountable 
mathematical d i f f i c u l t i e s  stood i n  the  way of theore t ica l  treatment of the  
flow phenomena of the  viscous f lu id .  It i s  Professor Prandt l ' s  g rea t  m e r i t  
t o  have shown a way t o  numerical treatment of viscosi ty ,  par t icu lar ly  of 
the  technically important flows under consideration and thereby t o  have 
opened up new v i s t a s  on many important perceptions about t he  drag problem 
and related questions. Prandtl  W a s  able  t o  show t h a t  i n  the  case of most 
of  the  technically important flows one may treat the  f l o w ,  as a whole, as 
f r i c t ion le s s  and u t i l i z e  the  simplifications for the  calculation thus made 
possible, but  t h a t  i n  the  immediate neighborhood of the  so l id  w a l l s  one 
always had t o  take the f r i c t i o n  in to  consideration. 
f o r  the  purpose of calculation, the  flow surrounding a body i n t o  two 
domains: a layer  subject t o  f r i c t i o n  in  the neighborhood of the body, and a 
f r i c t ion le s s  region outside of t h i s  layer .  The theory of t h i s  s M a l l e d  
"Prandtl's f r i c t i o n  o r  boundary layer" ha8 proved t o  be very f r u i t f u l  i n  
modern flow theory; the  present lec ture  w i l l  center around it. 

Thus Prandtl  BlJbfLivides, 

A t  t h i s  point I w a n t  t o  indicate  a few appllcations of t he  boundary- 
layer  theory. 
f r i c t iona l  surface drag of bodies immersed i n  a flow, f o r  instance, t he  
drag of a f la t  p la te  i n  longitudinal flow, the  f r i c t i o n a l  drag of a ship, 
a wing prof i le ,  and an airplane fuselage. A special  property of the  
boundary layer  i s  the f a c t  t ha t  under cer ta in  circumstances reverse flow 
O C C W B  i n  the  immediate proximity of the  surface. Then, i n  connection 
with t h i s  reverse flow, a separation of the  boundary layer  takes place, 
together with a more or less strong formation of vor t ices  i n  the  flow 
behind the  body. Thus a considerable change in  pressure dis t r ibut ion,  
compared with f r i c t ion le s s  flow, r e su l t s ,  which gives r i s e  t o  the  form 
drag of t he  body immersed in  the  flow: The boundary-layer theory therefore 
o f f e r s  an approach t o  the calculation of t h i s  form d r q .  Separation occurs 
not only i n  the  flow around a body but  a l s o  i n  the  flow through 9 divergent 
tunnel. 

Thus flow phenomena i n  a diffuser ,  as, f o r  instance, i n  $he bucket 

A first important application is  the  calculation of t he  

g r i d  of a turbine, may be included in  boundary-layer thsory. 
the  phenomena connected with the  m a x i m - a n  lift of a w i n g ,  where f l o w  
separation i s  concerned, can be understood only with the  a id  of' boundary- 
layer  theory. 
by boundary-layer theory. 

AE w i l l  be shown i n  d e t a i l  later,  one must dist inguish between the  
two s ta tes  of boundary-layer flow - laminar ard tu-bulent;  t h e i r  flow l a w 6  
are very different .  
main parts: 1. Laminar flows, 2. Turbulent flows, 3. Laminar-turbulent 
t ransi t ion.  
it w i l l  s t i l l  be necessary as preparation t o  discuss t o  Borne extent the  

Furthermore, 

The problems of heat t ransfer  a l so  can be explained only 

Accordingly, t he  lec ture  w i l l  be divided in to  three 

Although the  boundary layer  w i l l  be our main consideration, 
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general theory of the viscous f lu id .  
chapter. 

This w i l l  be done i n  the first 

CHAPTER I. VISCOSITY 

Every f l u i d  of fe rs  a resistance to  a form variation taking place i n  
f i n i t e  time interval ,  which is of different  magnitude according t o  the 
type of f lu id .  It is, f o r  instance, very large f o r  syrup o r  o i l ,  but 
only small f o r  the technically important f l u ids  (water, a i r ) .  

The concept of visco8ity can be best made c lear  by means of a t e s t  
according t o  f igure 1: 

Let f l u i d  be between two para l le l  plates  lying a t  a distance h 
from each other. Let the lower p la te  be fixed, while the upper p la te  i s  
moved with the velocity 
For mming the upper p la te  a tangential force P must be expended which 
i s  

I+, uniformly and pa ra l l e l  t o  the lower one. 

according t o  experiment, where F i s  the area of the upper p l a t e  and p 
i s  a constant of proportionality. 
quantity 

(End ef fec ts  a re  not included). The 
p i s  cal led the  viscosi ty  coefficient or  the dynamic viscosity.  

Since the phenomenon i n  question is a para l le l  gliding, the transverse 
velocity component i n  the y-direction, denoted by v, equals zero. The 
f lu id  adheres t o  the upper and lower surface, respectively, a l inear  
velocity dis t r ibut ion between the p l a t e s  i s  s e t  up, the magnitude of 
which depends solely on y. 

Since fo r  y = 

the tangential  
there fellsxs : 

0: u = 0, f o r  y = h: u = uo. If one designates Pb, 
force per un i t  area, as the f r i c t iona l  shearing s t r e s s  7 ,  
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Ths dimensions of p a re  accordingly kg sec/m2. A flow as represented 
i n  figure 1, where no transverse velocity occurs m d  the  shearing stress 
a t  a l l  points of the  flow i s  therefore given by equation .(1.2), i s  ca l l ed  
simple shear flow. I n  the  special  cas2 described, the  shearing s t r e s s  i s  
everywhere of equal magnitude, and equal t o  t h a t  a t  t he  surface. Besides 
the  dynamic viscosity p the  concept,of kinematic viscosi ty  v is  

required, which f o r  the  density p F g  sec21&] is  defined as 

v = [m*/s] 
P 

For 200 C, v is, f o r  instance, f o r  water: 

v = 1.01 x 10-6 ,'/e 

f o r  air: 

V = 14.9 x lo4 m2/e ,., 1 lo4 m2/s 
7 

if the  a i r  pressure has the  standard value po = 760 mm hg. 

CHAPTER 11. POISEUD FLOW 'THROUGH A PIPE 

The elementary empirical f r i c t i o n  l a w  of the  simple ah ar f l o v  
derived above permits the immediate determination of the  flow and the  
resistance i n  a smooth pipe of c i rcu lar  cross section and of constant 
diameter, d = 2r. 
pipe one c u t s  off a piece of pipe of length 2 ( f ig .  2) and examines 
the cylinder of diameter 2y, 
pipe axis. 
w i l l  be again a function of y. A pressure difference p1 - p2 i s  
required for forcing the f l u i d  through the cylinder. 
p r a ~ t i c s l  sxperience, the s t a t i c  presswe across svery cross  section may 
be regarded as constant. 
izpenient on the 35stJax:t: from- the beginning of t k - s  pipe. 

A t  a very la rge  distance from the  beginning of the 

the  axis of which i s  ident ica l  with the  
According t o  what has been sa id  so far, the  velocity probably 

According t o  

Tha f l o v  i s  asaim& t o  be steady and not 
Equilibyium 
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must then ex i s t  between the pressure and the f r i c t iona l  shearing s t r e s s  
which attempts t o  re tard the motion. y 
the following equation is  valid:  
the cross sections = f r i c t iona l  force acting along the cylinder w a l l ,  or  

Thus f o r  the cylinder of radius 
pressure force difference acting a t  

or 

p1 - p2 T =  
2 2  (2. l a )  

Since f l o w  para l le l  t o  the axis i s  t o  be expected, one takes f romthe  

previous paragraph, 

velocity diminishes with increasing distance from the axis; thus 
i s  negative, the shearing s t resses  under consideration, however, m e  
posi t ive) ,  and, a f t e r  separation of the variables, du becomes: 

7 = - # ( the minus sign indicates t ha t  the as 
du/dy 

and, on integration: 

From the f a c t  t h a t  for 
follows t h a t  the constant of integration C has t o  be C = r2/4. Thus: 

y = r the velocity i s  supposed t o  be u(y) = 0 
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This equation (2.3) i s  Poissui l le ' s  l a w  f o r  pipe flow. 
the velocity u(y) i s  dis t r ibuted parabolically over the pipe cross 
section. 
velocity i s  greatest ,  namely: 

It s t a t e s  t h a t  

The apex of the parabola l i e s  on the pipe axis; here the 

Therewith one may write (2.3): 

(2.4) 

By Poiseuille 's  law (equation (2.3)) the drag of the developed laminar 
flow (which i s  proportional t o  
the f irst  power of the velocity. 

p1 - p2) i s  d i rec t ly  proportional t o  

T h i s  statement i s  character is t ic  of all kinds of laminar flow 
whsreas, as  w i l l  be seen l a t e r ,  the drag i n  turbulent flow i s  almost 
proportional t o  the second power of the velocity. 

The flow volume for  the present case remains t o  be given. 

designating an s e a  element, Q i s  Q = u(y) d F = volume of the 

velocity paraboloid, therefore 

With dF s 
This flow law i s  often used f o r  determination of the viscosity,  by 
m3asurlng the quantity flowing subjected t o  a pressure gradient (usually 
produced by gravity i n  a ve r t i ca l  capi l lary tube).  O f  course, the 
s tar t ing losses m u s t  be taken in to  consideration which due t o  the mixing 
zone (vortex formation) a t  the pipe end a re  not recovered t o  t h e i r  full 
extent. 

A drag coeff ic ient  X w i l l  now be defined.'  Since turbulent flows 
a re  more important than lamhar ones and since the drag i n  turbulent 
flow increases about as the square of the velocity, X w i l l  a lso be 
rererreii TO u2. 

For flow problems, l e t  X thus be defined as:  r a t i o  of the pressure 
drop along a t e s t  section of a specified character is t ic  length t o  the dynamic 
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pressure q = pC2/2, with E = = the mean veloci ty  (average taken 

across the  cross sect ion) .  Then: 

2 r[r 

h . = & d  
&iF P -  2 

with d = charac te r i s t ic  length, 
diameter, and with h. = dimensionless quantity. 
laminar pipe flow, according t o  equation (2.5) 

thus, for the  present cas;, the  pipe 
For the present developed 

Thus : 

o r  

64 x = -  
Re 

(2.7) 

with the  dimensionless quantity Re = - 'a 
of the c i rcu lar  pipe. 
dependent on the veloci ty  w a s  re fe r red  t o  

signifying the Reynolds number v 
Since the press.ure drop which i s  only l i n e a r i l y  

Ti2, then, for laminas flow: 

I 
U 

A -  -. A logarithmic p lo t  of h = f(Re) o r  = f(5) therefore r e s u l t s  

i n  a s t r a igh t  l i n e  inclined 4 5 O  toward the Re-axis (compare f ig .  82 Par t  113. 

After t h i s  short  analysis  of the  one-dimensional case of v i scow 
f l u i d  we w i l l  now consider the th red imens iona l  case. 
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CHAPTER 111. EQUATIONS OF MOTION OF THE VISCOUS FLUID 

a. State  of Stress  

For t h i s  purpose one must know first of a l l  the general s t a t e  of 
stress i n  a moving viscous f l u i d  and must then connect t h i s  s t a t e  of 
s t r e s s  w i t h  the s t a t e  of deformation. For the  deformation of so l id  
bodies the resistance t o  the deformation i s  put proportional t o  the 
magnitude of the deformation (assuming the va l id i ty  of Hooke's l a w ) .  

For f la r ing  f luids ,  on the other hand, the resistance t o  deformation 
w i l l  depend on the deformation velocity, tha-t is, on the var ia t ion of 
velocity i n  the neighborhood of the point under conslderation. 
bodies: displacement gradient = displacement per second. Fluid: 
velocity gradient) .  

(Solid 

One starts from the basic l a w  of mechanics according t o  which: 
mass x acceleration = sum of the acting, or  resul tant  force. For the 
mass-per-unit volume, t ha t  is, the density p, one may write the law 

Dw - = substantial  acceleration 
D t  

K = mass forces - 
R = surface forces, composed of pressure forces  norma t o  the - 

surface and f r i c t i o n a l  forces i n  the direction of the 
surface 

- F = negligible extraneous forces 

In  order t o  formulate the surface forces, one imagines a small rectangular 
element of volume 
front  corner of which l i e s  a t  the point (x, y, 2). 
very small so tha t  only the l inear  var ia t ions of a Taylor devsl3pment 
need to  be taken in to  consideration; on i ts  surfaces dy dz a c t  the 
resultant s t r e s s s s  (vectors):  

dV = dx dy dz cut  out of the flow ( f ig .  3 )  the l e f t  
The elemsnt i s  t o  be 

a-p, dx, respectively 
ax -px or  Ex + - (3.2) 

___ - .- __ 
* Throughout the tex t ,  underscored l e t t e r s  a re  used i n  place of 

corresponding G e r m  sc r ip t  l e t t e r s  used i n  the or iginal  tex t .  
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(The index x 
normal t o  the x-direction). 

s ign i f ies  t ha t  the s t ress  tensor a c t s  on a surface element 

Analogous terms r e s u l t  f o r  the surfaces dz dx normal t o  the 
y-axis and dx dy normal t o  the z-acis,  i f  x i n  equation (3.2) i s  
replaced everywhere by y or z,  respectively. From t h i s  there r e s u l t s  
as components of the resu l tan t  force: 

dx dy dz ?EX Force on the surface element normal t o  the x-direction: - 
dX 

aP 
Force on the surface element normal t o  the y-direction: -9 dy dz dx 

aP 
dz dx dy -2 Force on the surface element normal t o  the z-direction: - aZ 

The t o t a l  resu l tan t  surface force 
s t a t e  of s t r e s s  is therefore: 

E per uni t  volume caused by the 

(3.3) 
ax as a Z  

p , p and p are  vectors which can be fur ther  decomposed in to  
-x -y -2 
components. 
element, t ha t  is, the normal stresses,  a r e  designated by u 
by the index the direction of t h i s  normal s t ress ) ;  the other components 
( tangent ia l  s t resses)  a re  denoted by T (with doubk iqdex: the f i r s t  
indicates  t 9  which axis the surface elemmt i s  perpendicular, the second, 
the axial direction of the s t r e s s  7 ) .  With these symbols there is: 

In t h i s  decomposition the  components normal t o  every surface 
(indicating 

? + ju + kT 
Y Z  I P Y 

(3.4) 

This s t a t e  of s t r e s s  represents a tensor with nine vzc-tor components, 
which can be chnracterized by the s t ress  matrix ( s t r e s s  tensor):  
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It can rezdily be shown that those of the six tangential stresses 
which have the same indices, although in interchanged sequence, must be 
equal. 
of the small cube dx dy dz with respect to rotation: 

This follows for a homogeneous state of strese from the equilibrium 

Since T dy dx is the force attempting to rotate the cube counter- 
Xy 

clockwise about the z-axis, (seen from above in fig. 3), with the lever 
arm dx, and since, correspondingly, the force -T dx dz attempts to 
rotate the cube clockwise about the z-axis, with the lever arm dy the 
balance of moments requires: 

Yx 

= T dy dz dx - T~ dx dz dy = 0, thus T~ 
xg 

Correspondingly, because of freedom from rotation about the x-exis 
7 = T  

7 = T  the nine components of the stress tensor are reduced to six 
and the stress matrix (equation (3.5)) is converted into the stress 
matrix symmetrical ‘with respect to the principal diagonal: 

and because of freedom from rotation about the y-axis 
YZ ZY’ 

zx XZ’ 

(stress matrix) (3.6) 

For the frictional force one obtains according to equation ( 3 . 3 )  by 
insertion of the components from equation (3.4) m d  by reduction to the 
six remaining terms according to equation (3.6): i 
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= x-component + y-component 

+ z4omponent 

For the case of the f r ic t ion less  ( ideal)  f l u i d  a l l  shearing - 
s t resses  disappear 

and only the normal s t resses  remain, which i n  t h i s  case a re  a l l  equal. 
Since the normal stresses from within toward the outside a re  denoted as 
positive, the normal s t resses  equal the negative f l u i d  pressure: 

ux = u = uz = -p (3 .9)  Y 

The s t a t i c  pressure equals the negative arithmetic mean of the normal 
stresses:  

1 -p = - 
3 (ox + uy + “2) 

b. E-Late of Deformation 

The s t a t e  of s t r e s s  t reated so f a r  is, alone, not very useful. 
Therefore we w i l l  now consider the s ta te  of deformation 
f i e l d  of velocity variations) 
s t a t 3  of stress .md state of deformtion. 

( tha t  i s  the 
and then s e t  up the re la t ions  between 
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Let the velocity xA with the components uA, vA, wA i n  the 
directions of the axes ex i s t  a t  the point A the  coordinates of which 
are XAJ YAJ 'A' 

I f  one l imi t s  oneself t o  the pointa x, y, z i n  t h s  immsdiate 
neighborhood of  A with the velocity w_ = i u  + jv + lp, and i f  one 
limits oneself - as also i n  se t t ing  up the s t a t e  of deformation - t o  
l ineas  t e r m  only, one obtains f o r  the deformation the r e l a t ive  change 

z per unit i n  position between the points x, y, z and x 

time, that  is, tho difference of the ve loc i t ies  a t  the points x, y, z 
A' 'A' A 

2 -  
AJ 'A' A' 

and x 

dw = i du + j dv + _k dw = distor t ion of the f l u i d  region i n  the 
neighborhood of the point A. 

Omitting the index A one obtains therefore: 

+ &  ) (g dx + 
a Y  dy + 5 dz) 

Thus the velocity var ia t ion (and hence, on integration, the velocity 
i t s e l f )  in the neighborhood of the point 
pa r t i a l  derivatives of the velocity components with respect t o  the space 
coordinates are  known. Corresponding t o  the s t r e s s  matrix, one may form 
a deformation matrix: 

A is  known i f  the nine 
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deformation matrix 

The friction forces of the viscous fluid are given by a relation (which 
will have to be determined) between these two matrices. 
deformation matrix is to be somewhat clarified. 

First, the 

1. Case of pure elongation. 

One assumes u - ua = a(x - xA), with a = = constant. Let all ax 
other terms of the matrix disappear; the matrix will then appear as 
follows : 

Then the velocity variation is simply du = a dx, and u = ax. 
A l l  points of the y e i s  remain at rest, the points to the right and 
left of it are elongated or compressed, according to whether a > 0 
or a < O  (fig. 5 ) .  The equation u = ax therefore represents an 
elongation or expansion parallel to the x-axis. 
apply for the other terms of the principal diagonal of the matrix. 

Corresponding relations 

2. Case of pure translation 

A l l  terms disappear; the matrix then reads: 
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In this case, which, as a matter of fact, should have been mentioned 
first, u - ua = 0, du = 0; u = constant. The velocity component 
parallel to the x-axis is uniform (correspondingly for the other axes). 

3. Case of angular deformation. 

aU One assumes u - ua = e(y - ya), with e = - = constant. All as 
other terms equal zero, and the matrix reads: 

du = e dy and u = ey; 
position; all points of the y-axis shift to the right (left), when e > 0 
(e < 0 ) ;  for e > 0 the y-axis is rotated clockwise by the angle E 
(because of the linearity). The y-axis is simultaneously elongated. The 
phenomenon in question is therefore a shearing (fig. 6), with tan E = e. 

that is, all points of the x-axie retain their 

Correspondingly there results for v - v = f (x - xA) and a 

dv = f ax; v = IX 

All points of the y-axis retain their position; the points of the x-axis 
m e  rotated by the angle 6; tan 6 = f (fig.7). Terms outside of the 
principal diagonal of the matrix result therefore in a deformation of 
the right angle with axis-elongation (shearing). 
the x- and y-axes is, therefore, for e > O  and f > O  deformed by 

The right angle between 

E + 6 = + = 7 = Deformation about the z-axis 
ax ay xy 



Correspondingly : - - + = deformation about the y-axis 
aZ ax 

y = -  bw + = deformation about the x-axis 
YZ ay aZ 

(The deformation angles axe herein regarded as small so that the tangent 
may be replaced by the argument). 

c. NavierStokes Formulation for the Stress Tensor 

One now proceeds to relate the stress matrix (equation (3.6)) with 
, the deformation matrix (equation (3.12)). The former is symmetrical with 

respect to the principal diagonal, but not the latter. 
obtains a symmetrical defomtion matrix by adding to equation (3.12) 
its reflection in the principal diagonal. Furthermore, one first splits 
off the.pressure 
matrix and sets the remaining stress matrix, according to Stokes, 
proportional to the deformation matrix made symmetrical: 

However, one 

p (contribution of the ideal fluid) from the stress 

T x y  Txz 

I 

7x2 7 y z  uz 

F r o m  equation (3.13) each stress component may be given immediately by 
coordinating the homologous parts of the matrices to each other. 
instance : 

For 

ox = - p + 2 p a = static pressure + pressure due to 
ax velocity variation, or: 
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au av aw 
az = - p + 2px uX = - p + 2 p s ;  u = - p + 2~-3 

9 as 

or 

for one-dimensional flow T 
XY = 7sx ds L 

Furthermore, there follows from equation (3.13): 

"0 + u  + u  = - p  
3 x  Y 4 

b ec aus e 

all av aw 
ax ay aZ - +  - + - = div 3 = 0 

(3.14) 

'for the incompressi-,e flows free of sources and sir-s un-3r coneidera- 
tion.* 
the pressure equals the arithmetic mean of the normal stresses. 

Thus for the viscous incompressible flow, as for the ideal fluid 

With these results the components of the friction force may be 
expressed according to equation (3.7) as follows: 

* The compressibility manifests itself a8 normal stress, since it can 
be interpreted as a pressure disturbance, for instance due to variation 
in density, which attempts to spread in all directions - considered 
infinitesimally. 
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or, since div w = 0, - 

R = - -  ; t pAv 
9 

R = -  ht pAw aZ Z 

a % ,  a2u + aZ, 
ax2 ay2 az2 

in which Au = - 

(3.15) 

If one finally designates the mass forces by K = p(iX + jY + kZ), and 
assumes the decomposition of the substantial derivative into a local 
and convective part as known frornlhler’s equation, one obtains for the 
components of the equation of motion of the non-etationary, incompressible, 
and viscous fluid from equation (3.1): 

+ w -  = p Y - -  ap + pAv av ”) aZ as 
p ( - + u z + v -  av av 

at as 

In addition, the continuity equation 
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is  used. Written i n  vector form, the NavierStokes d i f f e ren t i a l  equation 
and the equation of continuity read 

div = 0 (3 .19)  

Due t o  the f r i c t i o n  terms, therefore, terms of the second order enter 
the d i f fe ren t ia l  equation. 

Boundary cond.itions a re  attached t o  these equations. If a l l  f r i c t i o n  
terms on the r igh t  side a re  cancelled, t h a t  i s  V = 0 , the  d i f f e ren t i a l  
equations become equations of the f i r s t  order and =boundary condition 
is  sufficient,  namely the boundary condition of the potent ia l  flow: 
vn = 0 on t h e  bounding w a l l s .  

This means tha t  the normal component vn of the velocity a t  the 
bounding surface must disappear on the surface i t s e l f  whereas the f l u i d  
s t i l l  can gl ide para l le l  t o  the boundary (tangential  velocity 
pa r s l l e l  t o  the surface 

vt 
# 0). 

For viscous flow where the d i f f e ren t i a l  equation i s  of the second 
order, two boundary conditions a re  required, namely: 

vn = 0 and vt = 0 (condition of no s l i p )  (3.20) - 
t ha t  is, the f l u i d  must i n  addition adhere t o  the surface. 

Second lec ture  (Dec. 8, 1941) 

These NavierStokes d i f f e ren t i a l  equations represent together with 
the equation of continuity a system of four equations f o r  the four 
unlrnown quant i t ies  u, v, w, p. On the l e f t  side of the NavierStokes 
d i f fe ren t ia l  equations a re  the i n e r t i a  terms, on the r igh t  side the mass 
forces, the pressure forces, and the f r i c t i o n  forces. 

Since Stokes' formulation is, of course, at first purely arbi t rary,  
it i s  not a p r io r i  cer ta in  whether the NavierStokes d i f f e ren t i a l  
equations describe the motion of a f l u i d  correctly.  
require ver i f icat ion,  which i s  possible only by way of experimentation. 

They therefore 
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Unfortunately, due to unsurmountable mathematical difficulties, a 
general solution of the differential equation is not yet known, that is, 
a solution where inertia and friction terms in the entire flow region 
are of the same order of magnitude. However, known special solutions 
( for  instance, the pipe flow with predoninmt viscosity or cases with 
large inertia effect) agree so well with the experimental findings, 
that the general validity of NavierStokes differential equation hardly 
seems questionable, 

The plane problem: 

By far the greatest part of the application of Navier-Gtokes 
differential equations concern "plane" caees, that is, the cases where 
no fluid flows in one direction. The velocity vector 1 is then given 
by 

since w = 0. The equation system 
transformed into the 3 equations 

(equations (3.16) and (3.17)) then is 

au+u-+v")= au .G ax as ax2 
p x - a x +  ap .( & A + &  h2) 

with the three unlmown factors u, v, p (X and Y are the components 
of the mass force K, per unit volume). 

After various minor transformations the equation system may be 
written as a single equation. 
vector rot which for the plane m s e  ~ R S  cn1y zmipoiierrt not 
equalling zero: 

To this end one introduces the rotational 

1 - rot w = mZ 2 2-- (4.3) 
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Furthermore, the mass force in equation (4.2) is put equal to zero. 
This is permissible in all cases where the fluid is homogeneous and no 
free surfaces are present. In order to introduce uZ into equation (4.2), 
the first equation of (4.2) is differentiated with respect to and 
the second with respect to x; then the first is subtracted fro= the 
second and one obtains: 

y, 

or 

With this transformation the pressure term have been eliminated. 
Equation (4.5) may now, with cc/p = V ,  be written: 

Dol, = VLLO 
Dt 

(vorticity transport equation) 

with (o = wz being denoted as the vorticity. 

T h i s  equation signifies: The convective (substantial) variation 
of the vortex strength equals the dissipation of vorticity by 
friction. 

Equation (4.6) forms with the equation of continuity a system of 
two equations with tvo unknowns, namely u and v, the derivatives of 
which define 0). 

By introducing a flow function ~(x,Y) one may finally introduce 
a single equation with the unknown \Ir. 
the integral of the equation of continuity. 

The flow function represents 
One sets: 

That is, therefore, the 

(4.7) equation of continuity 
is identically 
satisfied by 9 .  
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Moreover, 

21 

That is: 
as large as the vo r t i c i ty  (angular velocity). 
equat im (4.5) becomes, a f t e r  division by P: 

The Laplacian of the flow function l e  exactly minus two times 
With t h i s  r e s u l t  

or expressed only i n  $ with equation (4.7): 

(4.10) 

This one equation with the unknown 
equation, but writ ten i n  terms of J r .  

$ i s  the vor t ic i ty  transport  

The i n e r t i a  terms are  again on the  l e f t ,  the viscosi ty  terms on the 
r igh t  side. 
order for the flow function. 
d i f f i c u l t  because of the non-linearity. 
the f r i c t i o n  t e r n  very strongly predominate. 

Equation (4.10) i s  a d i f fe ren t ia l  equation of the fourth 
Again, its general solution is  extremely 

For very slow (creeping) motions 
Then one may se t :  

M$ = 0 (4.11) 

This simplification i s  permissible only because the d i f f e ren t i a l  equation 
remains of the fourth order, so t ha t  no boundary condition i s  lo s t .  
However, being l inear ,  t h i s  equation i e  a t  l e a s t  solvable. 
a l so  i n  the theory of e l a s t i c i t y  where it is  designated as the bipotent ia l  
equation. There ex i s t s  a solution of equation (4.11) by Stokes f o r  
moving dropletsrwhich w a s  extended by Cunningham t o  very small drop 
diameters (comparable t o  the mean f ree  path of the molecules). 

It appears 

Herewith we shall conclude the m r e  general considerations and turn 
te the b e - m d ~ y  layer pr~blern proper,  i i d t i n g  ourseives t o  f l u i d s  of 
very elr?sll viscosi.ty V .  

A few preparatory considerations w i l l  lead up t o  the boundary layer  
problem. 
f r i c t ion  terms of the NavierStokes' d i f fe ren t ia l  eqilation i n  the case of 
small viscosity.  
proved below. 

One might conceive the notion of simply eliminating a l l  the 

However, t h i s  would be fundamentally wrong as w i l l  be 
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An equation which is completely analogous t o  equation (4.5) occurs 
i n  the theory of heat t ransfer :  

+ u - as + v 2) = h. (5 a 9 + -) a29 

bs as2 c p (” a t  &x 
(4.12) 

where the  velocity components a re  retained xhereas the ro ta t ion  
replaces the temperature 9, the  density p the specif ic  heat cp 
per unit volume, and the viscosi ty  p the thermal conductivity A .  On 
the l e f t  of equation (4.12) stands the temperature change due t o  
convection, on the r i g h t  the change due t o  heat t ransfer .  

o 

The temperature dis t r ibut ion around a heated body inrmersed i n  a 
uo flow with the f r ee  stream velocity 

determined by the d i f f e ren t i a l  equation (4.12). 
t ha t  for small 
extends.toward the f ront  and a l l  s ides  far in to  the ffow ( so l id  contour) 
whereas fo r  large uo 
and a narrow wake (dashed contour). 

( for  instance f i g .  8) is  

One perceives in tu i t ive ly  
uo the temperature increase s t a r t i ng  from the body 

t h i s  influence is  mainly l imited t o  a th in  layer 

The analogy of equations (4.12) and (4.5) indicates  t h a t  the 
friction-rotation dis t r ibut ion i n  question must be similar:  For omall 
f r e e  stream velocity the ro ta t ion  is  noticeable a t  large distance from 
the body, whereas for large uo 
neighborhood of the body. 

the ro ta t ion  is  l imited t o  the immediate 

Thus for  rapid motions, that is, large Reynolds nurdbers (compare 
next section), one expects the following solution of NavieHtokes’  
d i f fe ren t ia l  equations: 

1. I n  the region outside of a th in  boundary leyer  01) = 0, tha t  is, 
potent ia l  flow 

2, Inside t h i s  th in  boundary layer  o # 0, thus no potent ia l  flow. 

Therefore, one must not set o) = 0 i n  t h i s  boundary layer, even 
f o r  small viscosity. 

It i s  t rue  tha t  the potent ia l  flow is  a l so  a solution of Navier- 
Stokes’ d l f f e ren t i a l  equations, but it does not s a t i s fy  the boundary 
layer condition vt = 0. 

Proof: The potent ia l  flow may be derived from potent ia l  O(x,y,z) 
as : 

a2a + + - = o  a2Q 
ax2 ay2 az2 

w = grad a, with AO = - .- (4.13) 



However, i f  A3 = 0, then a l so  grad A0 = A grad@ = 0, tha t  is, Ay = 0 
f o r  potent ia l  flow. 
tha t  i n  the Navier-Stokes d i f fe ren t ia l  equations the f r i c t i o n  terms 
vanish identically,  and hence tha t  the potent ia l  flow actually s a t i s f i e s  
the Navier-Stokes d i f fe ren t ia l  equations. However, it s a t i s f i e s  only 
the one boundary condition 

According t o  equation (3.18) t h i s  f a c t  signifies 

vn = 0. 

Thus, f o r  the l imit ing case of small viscosity,  one obtains useful 
solutions fo r  the l imiting procese v + O  not by cancelling the 
f r i c t i o n  terms i n  the d i f f e ren t i a l  equation, since t h i s  reduces i t s  
order ( the  d i f f e ren t i a l  equation of  the fourth order f o r  the flow 
function would turn in to  an equation of the second order; the Navier- 
Stokes d i f f e ren t i a l  equations would change from the second t o  the f i r s t  
order), so tha t  one can sa t i s fy  only correspondingly fewer boundary 
conditions. 

Thus the l imiting process V - 0  must not be performed i n  the 
d i f fe ren t ia l  equation i t s e l f ,  but only i n  its solution. 

This can be clear ly  demonstrated on an example (referred t o  f o r  
comparison by Prandtl)  of the solution of an ordinary d i f f e ren t i a l  
equation. Consider the damped osci l la t ion of a mass point. The 
d i f f e ren t i a l  equation 

m - ddX + k - dx + CX = 0 
dt2 a t  (4.14) 

applies i n  which m represents the osci l la t ing mass, k the damping 
constant and c the spring constant. (x = elongation, t = time). 

Let f o r  instance the two i n i t i a l  conditions be: 

t = 0; x = 0; dx/dt = 1 J 

I n  analogy t o  the cas8 i n  question one considers here the l imit ing 
since then the term of the highest order case of a very small mass m, 

tends toward zero. If one would simply put m = 0, one would t r e a t  
nothing but the d i f fe ren t ia l  equation 

dx 
d t  

k - + c x = o  (4.15) 

which by a s s d n g  the solution t o  be of the f o m  x = A eAt i s  
transformed into k A. + c = 0, whence X = -c/k. That is ,  the 
solution reads: 
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(4.16) 

However, the two i n i t i a l  conditions x = 0 and dx/dt = 1 a t  the 
time t = 0 cannot be sa t i s f i ed  with t h i s  solution. But if  one t r e a t s  
the complete d i f f e ren t i a l  equation (4.14) i n  the same manner there resu l t s :  

2 mh. + k h + c = O  

and hence : 

or the  square root might be developed in to  a se r i e s  and (since now the 
l imiting process m+O 
second term: 

i s  t o  be performed) broken off a f t e r  the 

thus X1 = - 
-k + k ( 1 - 9 )  - 

2m m k  x1y2 - 

Thus X1 
different ia l  equation, where, however, h2 had been lo s t .  For very 

small my 
combination of the par t icular  solutions, 

corresponds t o  the previous solution of the f i rs t  order 

h2 2 -k/m; therewith the general solution becomes, by 

Since for t = 0, x i s  a l so  supposed t o  equal zero, there follows: 
= - A1, thus: 

(4.18) 

This equation i s  plotted schematically i n  f igure 9. 
equation (4.18), which alone cannot sa t i s fy  the boundary conditions, 

The first term of 
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starts from the value A1 a t  the t i m e  t = 0 and decreases expo- 
nent ia l ly .  The second term 18 important only f o r  s m a l l  +values and 
plays no ro l e  fo r  large 
t h a t  the  t o t a l  solution (sol id  l ine) s a t i s f i e s  the boundary conditions. 
The slowly variable solution ( i n  X1) corresponds t o  the potent ia l  flow, 

t. It is very rapidly variable and assures 

the second, rapidly variable particular solution ( in  h. ) indicates,  as 
2 

it were, the narrow region of the boundary layer; the d l e r  m, the 
narrower t h i  8 region. 

Herewith w e  sha l l  conclude the general remarks and turn t o  the l a w  
O f  Similarity. 

CHAPTER V. REYNOLDS' LAW of SI-ITY 

So far no general methods for  the solution of the NavierStokes 
d i f f e ren t i a l  equations a re  known. 
values of the viscosi ty  a re  so far known only f o r  a very few special  
cases ( for  instance, P o i a e ~ l l l e ~  6 pipe flow). Meanwhile the  problem 
of flow i n  a viscous f l u i d  has been tackled by s t a r t i ng  from the limits, 
tha t  is, one has t reated on the one hand flows of very great viscosity,  
on the other hand flows of very emallviscosity,  since one obtains i n  
t h i s  manner cer ta in  mathematical simplifications. However, s t a r t i ng  
from these l imit ing cases one cannot possibly interpolate for flows of 
average v i  scositg. 

Solutions tha t  a r e  val id  f o r  a l l  

The theore t ica l  treatment of the l imiting cases of very great  and 
very emall viscosity is  mathematically s t i l l  very d i f f i cu l t .  Thus 
research on viscous f lu ids  w a s  undertaken largely from the experimental 
side. The Navier4tokes d i f f e ren t i a l  equations of fe r  very useful indi- 
cations, which permlt a considerable reduction of the volume of experi- 
mental investigation. The ru l e s  i n  question a re  the so-called l a w s  of 
Simih.Tity. 

The problem is: Under what conditions a re  the forms of flow8 of 
any l iqu ids  or gases around geometrically similarly shaped bodies them- 
selves geometrically similM Such flow8 a re  cal led mechanically similar. 

Consider f o r  instance the flows of two d i f fe ren t  f l u i d s  of d i f fe ren t  
ve loc i t ies  around two spheres of different s i ze  ( f ig .  10). 
conditions a re  the flows geometrically similar t o  each other? 
t h i s  i s  the case when a t  points of eimllar pos i%im $2 the two flow 
pat terns  the forces act ing on volume elements at  these points  have the 
same ra t io .  
l a w s  of s imi la r i ty  w i l l  r e s u l t  from th i s  requirement. 

Under what 
Obviously 

Depending on what kinds of forces  a re  i n  e f fec t ,  various 

Most important f o r  t h i s  investigation i s  the case where ell forces  
except the i n e r t i a  and f r i c t ion  forces are negligible. Furthermore, no 
f ree  surfaces a re  t o  l e  present, so  that  the e f f ec t  of gravity 58 
compensated by the hydrostatic pressure. In t h i s  case the flow mound 
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the two spheres i s  geometrically similar when the i n e r t i a  and f r i c t i o n  
forces have the same r a t i o  a t  every point. 

The expressions fo r  the i n e r t i a  and viscosi ty  forces acting on the 
volume elemmt w i l l  nowbe derived: there i s  as f r i c t i o n  force per 

P 2 J  a2u whereas the i n e r t i a  force per un i t  volume i s  uni t  volume - = 

p u h. The r a t i o  

d7 

ds as 
ax 

aU 
i n e r t i a  force - ax 

P U -  
- 

2 a U  f r i c t i o n  force 

must, therefore, be the same a t  all points of the flow. One now inquires 
as t o  the var ia t ion of these forces with var ia t ion i n  the quant i t ies  
character is t ic  of the phenomenon: f r e e  stream velocity V, diameter d, 
density p, and viscosity P. For variat ion of V and d the indi- 
vidual quantit ies i n  equation (5.1) a t  similarly located points vary 
as follows: 

Therewith equation (5.1) becomes: 

i n e r t i a  force 
f r i c t i o n  force P P (5.2) 

The law of mechanical s imilar i ty  i s  therefore: The flows around 
geometrically similar bodies similarly located and al ined with respect 
t o  the flow have, f o r  equal 
l i n e s  as well. If the flows i n  question are, for instance, two flows 
of the same f l u i d  of equal temperature and density (p and p equal) around 
two spheres,one of which has a diameter twice tha t  of the other, the flows 
are  geometrically similar provided that the f r e e  stream velocity f o r  the 
larger  sphere has half the ma@itl.de of t ha t  for  the smaller sphere. 

p V d/p, geometrically similar stream 
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The quantity p V d/p i8,as a quotient of two forces, a dimension- 
less number. 
the quantities their dimensions: 

This fact is immediately recognized by substituting for 

2 m 
= 1  PVd - kg sec2 m 

P m4 sec kg sec 

This law of similarity was discovered by Osborme Reynolds in his 
studies of fluid flows in a pipe. 
after him: 

The dimensionless quantity is called 

PV d/cc = V d/v = Re = Reynolds' number 

The introduction of this dimensionless quantity helped greatly in 
advancing the development of modern hydrodynamics. 

Connection between Similarity and 

Dimensional Considerations 

As is known, all physical laws can be expressed in a form free of 
the units of measure. Thus the similarity consideration may be replaced 
by a dimensional analysis. 
in the NavierStokes differential equations are essential for the stream 
line pattern: V, d, p, p. The question is whether there is a combination 

The following quantities appearing 

va P7 

which is a Reynolds number and therefore has the dimension 
amounts to determining a, j3, 7, 6 in such a manner that 

1. This 

~ d p p 7 ~ o = K  0 0  L T o = l  (5.3) 

with K, L, T representing the symbols for force, length,and time, 
respectively. Without limiting the.generality a may be set equal to 
unity (a = 1) since any power of a dimensionless quantity is still a 
pure number. With a = 1 there results fro= eqidation (5.3) 
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By equating the exponents of 
obtains the three equations: 

L, T, K on the l e f t  and r i g h t  s ides  one 

I K: 7 +  6 = 0  

L: 1 + p  4 7 - 2 6 = 0  

T: 27+ 6 = 1  

(5 .5 )  

The solution gives: 

p = 1 ;  7 = 1 ;  6 = - 1  (5 .6 )  

Accordingly the only possible dimensionless combination of V, d, p, p 
i s  the  quotient 

This dimensional analysis  lacks the p i c t o r i a l  qual i ty  of the s i m i l a r i t y  
consideration; however, it o f fe r s  the advantage of appl icabi l i ty  even 
when knowledge of the exact equation of motion i s  s t i l l  miassing, i f  
there  i s  only known what physical quant i t ies  determine the phenomenon. 

C m  VI. EXACT SOLVTIONS OF TEE NAm-STORES EQUmIONS 

In general, the problem of finding exact solutions of the N a v i e p  
Stokes d i f f e r e n t i a l  equations encounters insurmountable d i f f i c u l t i e s ,  
par t icular ly  because of the non-linemity of these equations which 
prohibits application of the pr inciple  of ailperposition. Nevertheless 
one can give exact solutions for a few special  cases, mostly, whsn the 
second power t e r m  vanish automatically. 
w i l l  be t rea ted  here. 

A few of these exact solutions 

One invest igates  f i r s t  layer  flows i n  genera l , . tha t  is, flows 
where only one veloci ty  conponent ex i s t s  which, moreover, I s  not 
dependent on the analagous posit ion coordinate, whereas the two other 
velocity components vanish ident ical ly;  thus f o r  instance: 
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The NavierStokes d i f f e ren t i a l  equations (3.16) a re  thereby transformed 
in to  : 

p - = p x - 4 + ,  au a t  h (:+:) 
32 
ay 

O = p Y -  

o = p z - -  ap 
a z  

while the continuity equation is identically sat ief ied.  

a. Pipe Flow, Steady and Star t ing  

1. Steady pipe flow. 

For the case of the pipe lying horizontally the mass forces  a re  
everywhere constant, and the  equation aystem (equation (6.2))  yields:  

with the solution 

p = ax + b y  t cz 

Thus the pressure i s  a l inear  function of the position. 

In t h ~  case ~f the pipe standing ver t ical ly  ( f ig .  11) the mass 
force i s  constant i n  the 
x-direction corresponding t o  the hydrostatic pressure of the f i e l d  of 
gravity,  Moreover, i f  one puts Y = 0 and Z = 0: 

y- and z-direction and increases i n  the 
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Thus there remains from equation (6.2) 

- = O o r -  a2P aJ? = constant ax ax2 

The system (equation (6.2))  Then becomes, under the fur ther  assumption 
of steady flow: 

a% a2u 1 

ay2 aZ 
- + - = - &i = constant 

2 lJ ax 

One t r i e s  a solution of the form 

u = u (a2+ by2 + cz2) max 

with 
condition u = 0 a t  the pipe w a l l  y2 + z2 = r2 there resu l t s :  

urnax representing the velocity a t  the pipe center,  With the 

2 a = 1; b = c = -I/= 

and therefore 
\ 

, w i t h  

(6.5) 

This solution i s  ident ica l  with equations (2.3) and (2.4) If one bears 
i n  mind that i n  those equations 
the pipe center. 
solution of the NavierStokes d i f fe ren t ia l  equations. 

y represented the r ad ia l  distance from 
Thus Poiseui l le ' s  pipe flow w a s  found as an exact 

2. Start ing f l o w  __ through .. a pipe. 

By the expression, "Starting flow through a pipe," the following 
problem i s  meant: 
be a t  r e s t  u n t i l  the time t = 0. A t  the t i m 2  t = 0 l e t  a pressure 

Let the f l u i d  i n  a c i rcu lar  pipe of i n f i n i t e  length 
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difference invariable with time, P1 - P p  suddenly be established 

across 9. piece of pipe of length 
following equation applies: 

2, so tha t  fo r  the en t i r e  pipe the 

t > 0 :  - =  ap ~1 -p2  = constant 
ax 2 (6.7) 

Here 

The solution of t h i s  problem, which w i l l  not be fur ther  discussed here, 
was given by Szymanski (reference 12). The phenomenon i s  not dependent 
on the longitudinal coordinate x. The velocity prof i les  a t  various times 
can be seen from f i g .  12. It i s  character is t ic  that, f i r s t ,  a t  the 
pipe center, the velocity remains locally constant and the f r i c t i o n  is  
notlcesble only i n  a t h in  layer near the surface. Only l a t e r  does the 
f r i c t i o n  e f fec t  reach the pipe center. Poiseui l le ' s  parabolic prof i le  
of the steady pipe flow is  attained asymptotically fo r  

# 0, and the ine r t i a  and f r i c t ion  terms balance each other. a t  

t+ 0 3 , .  

One must c lear ly  distinguish between the non-steady s t a r t i ng  flow 
through a pipe discussed here and the steady pipe i n l e t  flow. 
l a t t e r  i s  the flow a t  the i n l e t  of a pipe. The rectangular velocity 
prof i le  present i n  the entrance cross section is, with increasing 
distance 

This 

x from the in l e t ,  gradually transformed under the e f fec t  Of 
. 
dU 
ax 

f r i c t i o n  in to  Poiseuille 's  parabolic profile. Since here - # 0, 

t h i s  i s  not a layer flow. This i n l e t  flow w a s ,  f o r  the plane problem, 
exactly calculated from the d i f fe ren t ia l  equations by H. Schlichting 
(reference 14) and for  the rotationally-symmetrical problem, according 
t o  an approximate method, by L. Schiller (reference 32). 

Third lec ture  (Dec. 15, 1941) 

'b. Plane Surface; a Surface Suddenly Set i n  Motion 

and an Oscil lating Surface 

1. Oscillating Surface. 

Let a plane surface of i n f i n i t e  extent perform i n  i t s  plane rec t i -  

Let the osc i l la t ion  take place with the 
l i nea r  osc i l la t ions  i n  the x-direction ( f ig .  13). The y d i r e c t i e ~  i s  
assumed normal t o  the surface. 
velocity uo = A cos n t, with A denoting the amplitude, n the 

frequency of the oscilla-tion. 
by the f r i c t ion .  Sinse the surface i s  of  i n f i n i t e  extent, the s t a t e  of 
flow 2s independent sf' x and z .  The flow i n  question i s  therefore a 
non-steady p lane  layer  flow f o r  which 

The f lu id  near the surface i s  carr ied along 
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aP u = u(y , t ) ;  v = w 0; - E 0 ax 

If, f inal ly ,  one puts the ma88 forces equal t o  zero, the NavierStokes 
d i f f e r e n t i d  equations (equation (3.16) ) are  reduced t o  

2 
& = & A  

as2 a t  

with the boundary condition This equation has 
the same s t ructure  as the d i f f e ren t i a l  equation fo r  thermal expansion i n  
a rod ( l inear  equation of heat conduction). 
it i f  v i s  replaced by the thermal conductivity a and u by the 
temperature (compare equation (4.12)). 

y = 0, u = uo cos n t. 

It becomes ident ica l  with 

I For the solution of equation (6.8) one uses 

u = Ae* cos ( n t  - ky) 

where k i s  a constant t o  be determined. 

Then 

h = - k Ae-ky cos (n t  - ky) + k Ae-ky s in  ( n t  - Q) as 
a211 - = - 2k2Ae-ky s in  ( n t  - ky) 

Insertion i n  equation (6.8) gives n~ = 2k2AV, and thence 

k = v A  2 v  
(6.10) 

Th? velocity dis t r ibut ion u(y, t) is therefore an osc i l la t ion  with 

amplitxle decreasing toward the outside Ae - m; the layer a t  the 
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distance y from the surface has a phase lag of - y with respect t o  

the motion of the surface. The wave length X i n  the y-direction 
follows from Irx = 2x as 

E 

(6.11) 

Thus the co+scil lating layer  i s  thinner, the greater  the frequency 
and the  smaller the viscosi ty  V .  The r e s u l t  l, .Y is  t o  be noted. 
The velocity p ro f i l e s  f o r  various times are given i n  figure 13. 

n 

2. The Surface Suddenly Set in,Motion. 

Equation (6.8) yields  another exact solution of the NavierStokes 
d i f f e ren t i a l  equations, namely the f l o w  i n  the neighborhood of a plane 
surface which suddenly starts moving i n  i t s  own plane with the constant 
velocity uo. I n  t h i s  case the boundary conditions are 

(6.12) 
< t -0, f o r  all y: u = 0 

t > 0 ,  y = o :  u = u o  

An appropriate variable f o r  the solution i s  the dimensionless quantity 

As the solution of equation (6.8) with the  boundary conditions 
equation (6.12) one obtains 

(6.14) 

The co i - ree t~ess  of the eolution i s  readily confirmed by substi tution. 
Ths variatior; of the f l o w  with time i s  indicated i n  figure i l c .  ,03 

The probability in tegra l  appearing in  equation (6.14) gl, -e7* a7 

has, for 7 = T~ = 1.9, the value 0.01. Therefore, fo r  7 = 7 6' 
u = 0.01 uO. 
is ,  tharefore, 

The thickness of the l aye r  carr ied along by the f r i c t lon  
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(6.15) 

Thus here again the f r i c t i o n  layer  thickness i s  

6 -  p 

A t  t h i a  point w e  conclude the  discussion of layer  flows and turn  t o  a 
few other exact solutions of NavierStokes d i f f e ren t i a l  equations. 

C.  Flane Stagnat ion4oint  Flow 

The plane flow i n  the neighborhood of a stagnation point on a smooth 
w a l l  i s  considered. 
the corresponding poten t ia l  flow has the  poten t ia l  

With the coordinate system according t o  f igure  15 

CE, = a 2 (x2 - y2) (6.16) 

and the stream function 

Q = a x y  

The velocity component8 are: 

u = ax; v = 4 y  (a = constant)  (6.17) 

This i s  a poten t ia l  flow which, coming from the direct ion of the y-is, 
encounters the so l id  w a l l  y = 0, divides, and flows off  p a r a l l e l  t o  
the x-axis. 
flow must adhere t o  it, If one designates the veloci ty  components of 
the viscous flow by u(x, y )  and v(x, y) ,  the  boundary conditions f o r  
them are: 

Whereas the poten t ia l  flow g l ides  along the  w a l l ,  the viscous 

y = o ;  u = o ;  v = o  

y = w* , u = u ;  v = v  
(6.18) 

For the stream function of t h s  viscous f l u i d  one uses the equation: 
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Thence one obtains: 

The boundary conditione (Equation (6.18) ) require 

35 

(6.19) 

(6.20) 

(6.21) 

A t  large distances from the surface, t h a t  is, i n  the potent ia l  flow, the 
pressure i s  calculated from Bernoulli's equation 

p = po - g w2 = Po - a2 (x2 + y2) (6.22) 

with W = 
potent ia l  flow, given by equation (6.17). Let po be the t o t a l  pressure 
of the potent ia l  flow. 

signifying the magnitude of the velocity of the 

For the viscous flow one formulates the analogous equation 

With these equations one turns t o  the NavierStokes equations which read, 
for  vanishing mass forces: 

(6.24) 
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The continuity equation has already been integrated by introduction of 
the stream function $. 
into equation (6.24) one obtains 

By substitution of equations (6.20) and (6.23) 

These are two differential equations for the two unknown functions 
f(y) and F(y) which determine the velocity distribution and the 
pressure distribution, respectively. The component of the velocity u 
parallel to the surface, that is,the function 
interest. Since F ( 9 )  does not appear in the first equation, one 
solves first the first equation and then, after substitution of this 
solution, the second. Thus the differential equation to be solved reads 
at first 

f'(y), is of particular 

ft 2 - f f" = a 2 + v f'" (6.26) 

with the boundary conditions according to equation (6.21). 

This non-linear differential equation cannot be solved in closed 
form. If one introduces instead of y ths variable 

E = a y  (6.26~~) 

and in addition the similarity transformation 

Then the inhomogeneous term in equation (6.26) becomes equal to 1, and 
the solutions therewith become independent of the specific data for the 
flow. Thereby equation (6.26) become6 

If one now equates a2A2 = a2 and vAa3 = a2, that is, 
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the d i f f e ren t i a l  equation for cp(k) with f = t y  reads: 

(6.28) 

with the boundary conditions 

The solution found by se r i e s  development can be found i n  the thes i s  of 
Hiemenz (reference lo), compare table  l*. 
para l le l  t o  the surface is 

The velocity component 

It is  indicated i n  f igure 16. The curve cp ' (  t) increases linearly at  

thus within about one percent of the f ina l  value. 
the 'corresponding distance from the surface 
thiclmess ( f r i c t ion  layer  thicbness), then 

= 0 and approaches one asymptotically. For about 5 = 2.6, cp' Z 0.99; 
If one again designates 
as the boundary layer  y = 6 

I 

Thus i n  t h i s  flow, aa i n  the former one8, 

It i s  aleo remarkable t h a t  the dimensionless velocity dis t r ibut ion 
according t o  equation (6.29) and the boundary layer  thhkness  according 
t o  equation (6.30.) a r e  independent of x, thus do not vary along the w a l l .  

T h e  tables  appear i n  appendix, chapter X I I .  
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For later applications the characteristics important for the friction 
layer, displacement thickness 6* and momentum thickness 6 ,  are 
introduced here; they are defined by 

00 

u219 = / u(u - u) ay 
y=o 

The di~placement thickness gives the deflection of the stream lines of 
the potential flow from the surface by the friction layer; the momentum 
thickness is a measure of the momentum loss in the friction layer. By 
insertion of equation (6.29) in (6.31) and (6.32) and calculation of the 
definite integral one finds 

(1 - 9 ' )  dS = 0 . 6 4 8 2 E  
=0 

and hence 

:*= 2.218 
I 9  

(6.35) 

The quantity 8* is indicated in figure 16. For comparison with a 
later approximate solution one also notes the numerical value of the 

dimensionless quantity - g*2 - One finds from equations (6.17) and (6.33) 
dx' 

dU 
v d x  
- - = 0.4202 (6.36) 

The exact solution of the NavierStokes differential equations found 
here gives, therefore,.for large Reynolds numbers a friction layer 

thickness decreasing with and a transverse pressure gradient 
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decreasing with p a F a .  Both confirm the boundary layer assumptions* 
t o  be discussed later. 

d. Convergent and Divergent Channel 

A fur ther  c lase  of exact solutione of the AavierStokee d i f f e ren t i a l  
equations ex i s t s  fo r  the convergent and divergent channel with plane w a l l s  
( f ig .  17), as given by G. Hamel (reference 11). 

Without entering in to  the d e t a i l s  of the ra ther  complicated calcu- 
l a t ions  the  character of the solutions will be b r i e f ly  sketched: 

The velocity dis t r ibut ions f o r  convergent channels, plotted against  
distance along the surface f o r  various included angles a and f o r  various 
Rmuuibers appear as indicated i n  figure 18. 
velocity i s  almost canstant, and at the surfaces it suddenly declines t o  zero. 

A t  the  tunnel center the 

In the  caee of divergent tunnels one obtains great ly  d i f fe r ing  
forms far the  velocity profiles,  depending on the included angle and 
the Re-nuuiber. 
For small R e - n d e r s  and small included angles the velocity is posit ive 
over the en t i r e  croes section (sol id  curve i n  f ig .  19); f o r  larger  angles 
and la rger  Re-numbere, on the other hand, the velocity prof i les  have 
reverse flow a t  the surface (dashed curve i n  f ig .  19). 
i s  the i n i t i a l  phase of a vortex formation and therefore of the  separation 
of the flow from the surface, Generally, the separation does not occur 
symmetrically on both surfaces; the flow separates from one s ide and 
adheres t o  the other surface ( f ig .  20). 

Here a l l  velocity prof i les  have two inf lect ion points. 

The reverse flow 

These examples a l so  confirm the theory that exact splutions have the same 
character as approximate solutions of boundary layer  theory; i n  par t icular ,  
they confirm tha t  f o r  the convergent channel a very th in  layer  with con- 
siderable f r i c t i o n  e f fec t  i s  present near the surface (here also the  
calculation ahoy8 tha t  the layer thickness -fi) and t h a t  f o r  the 
divergent channel reverse flow and separation occur. 

We here conclude the chapter on the exact SOlutionE of the Navier- 
Stokes d i f f e ren t i a l  equations and turn t o  the approximate solutions. 
By exact solutions have been Mderstoodthose where i n  the Iiavier-Stokee 
d i f f e ren t i a l  equations all terms are  tahen in to  consideration tha t ,  i n  
the various cases, a re  not ident ical ly  zero. By approximate solutions 
of the NavierStokes d i f f e ren t i a l  equations w i l l  be understood, i n  
contrast, solutions where terms of small magnitude a re  neglected i n  the 
d i f f e ren t i a l  equations themselves. 
f r i c t ion  terms t o  be neglected simultaneously, since t h i s  would represent 
the case of potent ia l  flow. 

However, by no means a re  a l l  the 

q h e  rotationally-symmetrical stagnation-point flow has been 

(pt" + 2qq" - (pt2 + 1 = 0. 
calculated by Homann (reference 17). 
obtains the d i f fe ren t ia l  equation 

Instead of equation (6.28) one 
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CEUPITX? V I I .  VERY SLOW MCrrION (STOKES, OSEnV) 

The exact solutions of the NavierStokes d i f f e ren t i a l  equations 
discussed i n  the previous chapter a r e  of a very special  kind. 
them d e a l t  with flows along a plane surface, where the  stream l i n e s  
a re  rect i l inear .  
around arb i t ra ry  bodies, cannot be calculated exactly from the Navier- 
Stokes d i f f e ren t i a l  equations, but must be t rea ted  by approximate methods. 
Two kinde of such approximations are possible: 

Most of 

Most flows exis t ing i n  practice,  as f o r  instance flows 

1. For predominant viecoeity, completely neglecting the i n e r t i a  terms 
R e <  1). euggeete i t s e l f  (very small Re-number; 

2. For very small viscosi ty  and therefore predominant i n e r t i a  one 
takes the viscosity in to  consideration only i n  a very th in  
layer i n  the neighborhood of the so l id  w a l l ;  f o r  the rest, 
the flow is  regarded a s  f r ic t ion less .  
very large (Prandtl'a boundary layer theory). 

Here the Re-number i s  

The f i r s t  l imiting case with very small Re-number w i l l  be discussed 
i n  t h i s  chapter. A emall Re-number indicates  small veloci t ies ,  emall 
body dimensions, and large viscosity.  Since the i n e r t i a  terms depend 
on the square of the velocity whereas the f r i c t i o n  t e r m  are l inear ,  
a l l  iner t ia  terms i n  the WavierStokes d i f f e ren t i a l  equations are, for  
very small Rmunibers, n e a i g i b l e .  
approximation w i l l  thereby be obtained f o r  very slow (creeping) motion, 
as for instance the f a l l i n g  of a minute fog particle*) or the  s l o w  
motion of a body i n  a very viscid o i l .  

It is  t o  be expected t h a t  an 

Neglecting all i n e r t i a  terms one obtains from the NavierStokes 
d i f fe ren t ia l  equations (3.16) the following: 

aU av a~ 
ax as aZ + -  + - = o  - (7.2) 

~ 

*For a sphere f a l l i n g  i n  air  ( v  = 14 x lo4 m2/sec) for inetance: 
Re = V d/V = 1, f o r  d = 1 m; V = 1.40 cm/sec. 
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The same boundary conditions apply to this system of equations as apply 
to the complete NavierStokes differential equations, namely vanishing 
of the normal component vn =. 0 and the tangential component v = 0 
at the bounding surfacee. 

t 

The neglect of all inertia term8 in NavierStokes differential 
equations does not represent as serious an inaccuracy as the neglect of 
all friction tern when transforming the Navier-Stokes 
equations into Euler's differential equations of the frictionless flow. 
That is, by neglecting the inertia tern, the order of the differential 
equations is not lowered so that in the sfmplified differential equations 
the same boundary conditions as in Ithe NavierStokes complete differential 
equations can still be satisfied. 

differential 

Furthermore one obtains from the equations (7.1), taking into 
account the continuity, by differentiating the first with respect to x, 
the second with respect to y, the third with respect to z, the following 
equation for the pressure p 

that is, for creeping motions the pressure function p(x, y, z )  Js a 
pot enti a1 function. 

The details of the calculation w i l l  not be discussed more thwoughly, 
particularly since the creeping motion is technically not very iaportant. 
However, at least Stokes' famous solution for the sphere will be discussed 
briefly (fig. 21). The drag of a sphere for creeping motion consists of 
the contributions of the pressure drag (form drag) and the surface fric- 
tion drag. 
stress over the entire sphere surface. Stokes performed the integration 
of the equation system (7.1) and (7.2) f o r  a sphere in a uniform 
flow of velocity Uo. 
drag of the sphere of radius R: 

The latter is obtained by integration of the wall shearing 

There results, according to Stokes, for the entire 

W = W  + W  =6 f ipu0  D r R  (7.4) 

The drag is, therefore, pr@port.imal t o  the first p w e r  of the valcrcity. 
If one introduces for the sphere a drag coefficisnt cw vhich, in the 
customary manner, is referred to the frontal area and the dynamic pressure 
of the free stream velocity 
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(7.5) 

there  r e su l t s  fo r  the drag coeff ic ient  according t o  Stokes' formula: 

One can s t a t e  immediately t h a t  the stream l i n e  pat tern of t h i s  
creeping motlon must be the sams ahead of and behind the  sphere since 
for  reversal  of the i n i t i a l  flow (sign reversal  of the  veloci ty  
components) the equation system (equation (7.1))  goes over i n to  i t s e l f .  
The strean-line pat tern f o r  the  viscous sphere flow, as it presents 
i t s e l f  t o  an observer who i s  a t  r e s t  r e l a t i v e  t o  the  flow a t  in f in i ty ,  
i s  shown i n  figure 22. The f l u i d  pa r t i c l e s  a re  pushed aside by the  
sphere i n  f ron t  and come together again behind it. 

A s  shown by a comparison of Stokes' drag formula equation (7.6) 
with t e s t  r e s u l t s  (reference 33), t h i s  formula i s  va l id  only f o r  the  
region R e  < 1. 

Correction by Oseen 

In Oseen's l a t e r  improvement of Stokes? solution f o r  the  sphere 
. t he  ine r t i a  terms in the d i f f e ren t i a l  equations a re  par t ly  taken i n t o  
consideration. Oseen formulates the  veloci ty  components u, v, w: 

u = uo + u'; v = v'; w = w ?  (7.7) 

where u t ,  v', w t  may be considered as disturbance ve loc i t i e s  which i n  
general a re  small compared with the  f r e e  stream veloci ty  
assumption i s  n o t  actual ly  correct  f o r  ths  immediate proximity of the  
sphere su-rface. With the formulation (equation (7.7)) the  i n e r t i a  terms 
i n  equation (3.16) a re  divided in to  two groups, f o r  instance: 

Uo. This 

aut avt a U '  1 

ax 
, . . . and u'-, ut-, . . . ax ax TJo - 9 uo 

The second group of second order, as compared with the  first group, i s  
neglec td .  Therewith m e  then obtains From the NavierStokes eqiations 
of m3t ion  (3.16) the following equations of motion, which a re  taken a s  
a basis by Osecn. 
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In addition, one uses the continuity equation: 

a u t  av' &ft + -  + - = o  - 
ax aZ 

(7.9) 

and the same boundary conditions aB i n  the  NavieMtokes d i f f e ren t i a l  
equations. 
equations that were taken in to  consideration, f o r  instance Uo u, 

ax 
semi-quadratic terme. 
d i f fe ren t ia l  equations a re  both linees. The stream l i n e  pattern, as it 
r e s u l t s  f o r  t h i s  sphere flow according t o  Oseen, i s  given in  f igure 23. 
Here q a i n  the observer i s  at  r e s t  re la t ive t o  the f l u i d  a t  large distance 
from the sphere. Thus the sphere i s  dragged past  the obeerver with the 
veloci ty  UO. 
now not the same, as w a s  the case i n  Stokes' solution. Ahead of the 
sphere ex i s t s  almost the same displacement flow as i n  Stokes' pattern; 
behind the sphere, however, the s t reaml ines  are  closer together, that i s  
the velocity i s  greater  here than i n  Stokes' case. 
behind the sphere similar t o  tha t  from test  r e s u l t s  f o r  large Reynolds 
number s . 

One c a l l s  the contributions of the convective terme i n  these 
the 

These d i f fe ren t ia l  equations of Oseen and Stokes' 

The stream l i n e  pattern ahead of and behind the sphere ere 

A wake i s  present 

For the sphere drag calculated by Stokes there r e s u l t s  with the 
drag coeff ic ient  cw introduced i n  equation (7.5) the formula: 

UoD . 
c w = -  1 + 1 R e  ;Re = -  

Re 24 ( 16 ) V 

The t e a t  r e su l t s  (reference 33) show that Oseen's formula i s  f a i r l y  
accurate up t o  about Re = 5. 

With these br ie f  remarks w e  conclude the l imit ing case of emall 
Reynolds numbers and turn t o  the case which i s  of foremost i n t e re s t  i n  
practice:  the case of very large Reynolds number. 
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CHAPTER V I I I .  PRA"L'S BOUNDARY LAYER EQUNCIONS 

The other extreme case of very sma l l  v iscosi ty  or  of very large 
Reynolds In  t h i s  case the i n e r t i a  e f f ec t s  
a re  predominant within the main body of the f l u i d  whereas the viscosity 
e f f ec t s  there a re  almost negligible. 

number w i l l  now be treated.  

A signif icant  advance i n  the treatment of motion of f lu ids  f o r  
large Reynolds n d e r s ,  t ha t  is, i n  general, of f l u i d s  of very small  
viscosity, was at ta ined by L. Prandtl i n  1904 (reference 7). 
demonstrated i n  what way viscosity is essent ia l  f o r  large Reynolds 
numbers and how one can simplify the NavierStokes 
i n  order t o  obtain at l e a s t  approximate solutions. 

Prandtl 

d i f f e ren t i a l  equations 

L e t  us consider the motion of f l u i d  of very small viscosity,  f o r  
instance of a i r  o r  water surrounding a cyl indrical  streamline body 
( f ig .  24). Up t o  very near the surface the ve loc i t ies  a re  of the order 
of magnitude of the f ree  stream velocity 
as well as the velocity dis t r ibut ion agree t o  a large extent with those 
of the f r ic t ion less  f lu id  (potent ia l  flow). 
show, however, t h a t  the f lu id  by no means gl ides  along the surface (as 
i n  potential  flow) but adheres t o  it. 
a t  the surface t o  the fu l ly  developed velocity as it ex i s t s  a t  some 
distance f r o m  the body, i s  effected i n  a very th in  layer.  
distinguish between two regions which, it i s  true,  cannot be rigorously 
separated : 

Uo. The stream l i n e  pat tern 

More thorough investigations 

The t rans i t ion  from zero velocity 

Thus one must 

1. A th in  layer i n  the immediate proximity of the body where the 
i s  very large velocity gradient normal t o  the surface 

Q1 
(boundary layer ) .  Here the viscosi ty  p, though very small ,  
plays an essent ia l  ro le  inasmuch as the f r i c t i o n a l  shearing 

can assume considerable values. aw s t r e s s  T = p - 
an 

2. In the remaining region outside of t h i s  layer  velocity gradients 

Here f r i c t ion le s s  potent ia l  
of  such magnitude do not occur, so tha t  there the e f fec t  of 
viscosity becomes insignif icant .  
flow prevails. 

I n  general'one may say tha t  the boundary layer i s  thinner, the 
smaller the viscosity or, more generally, the larger  the Re-number. 
was shown before on the basis  of exact solutions of the NavierStokes 
d i f fe ren t ia l  equations t h a t  the boundary layer  thickness i s  

It 

s q / T  

The approximations t o  the NavierStokes d i f fe ren t ia l  equations t o  be made 
below are more val id  the thinner t he  boundary layer. 
of the boundary layer equations have an asymptotic character fo r  i n f in i t e ly  
increasing Reynolds numbers. 

Thus the solutions 
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Let us now mak 

45 

the simplifications of 
equations for the boundary layer. To t h i s  en 

,e NavierStokes d i f f e ren t i a l  
the order of magnitude of 

the separate terms of the Navie-tokes ddfferent ia l  equations must be 
estimated. One considers the flow around a cyl indrical  body according 
t o  f igure 24. One imagines the NavierStokes d i f f e ren t i a l  equations 
writ ten nondimensionally, by referr ing a l l  ve loc i t ies  t o  the f r e e  stream 
velocity Uo and the lengths t o  a body length 2 .  The pressure w i l l  be 
made dimensionless with p Uo2, the time with 2 / U o .  F’urthermore 
R e  = - ‘02 represents the Reynolds number. Accordingly, the NavierStokes 

V 
d i f f e ren t i a l  equations become - omitting the mass forces according t o  
equation (4.2), by writing the same l e t t e r s  f o r  the dimensionless quant i t ies  
a s  for the dimensional ones - 

- a U  + u -  au + v - = - a p + L  aU aU+- a2u 
ax as2 a t  ax a Y  

B 2  1 1/62 

a x R  2 

1 1 

The estimation gives: Longitidinal velocity u i s  of the order of 
magnitude 1. Dimensionless boundary layer thiclmess 8/2<<1. Therefrom 
f O l l O W S  : 

whereas the derivatives with respect t o  
magnitude, thus 

x are  O f  normal order of 
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I n  the second equation of motion all terms then are  of the order O f  

magnitude 6, including the t ranwerae pressure gradient h. In  the 

boundary layer, as long as it i s  thin,  the dependence of the pressure 
on y may therefore be neglected. Thus approximately the same pressure 
prevails within the boundary layer as a t  i t s  edge, t ha t  is, the pressure 
of the potential  flow. 
as it were,impressed by the potent ia l  flow. 

I a Y  

The pressure within the boundary layer  i s  therefore, 
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From the continuity equation follows therefore: 

The transverse velocity v i n  the boundary layer  i s  therefore, t o  the 
first order, small i n  comparison with the longitudinal velocity. Further 
there follows: 1 

a2v 1 av “ 6 ;  - - -  
ax ax 2 as2 6 
- - 6 ;  - 

Thus there r e s u l t  for the single terms of Navie-tokes d i f f e ren t i a l  
equations the orders of magnitude noted i n  equation (8.1): 
side i n  the f i r s t  equation 

On the r igh t  

aU * << - a2U 
ax2 aS2 

so tha t  it can be neglected 

One now obtains within the boundary layer  f r i c t i o n  terms which a re  
of the same order of magnitude as the i n e r t i a  terms, i f  
order of magnitude 62, 
written,  

1/R 18 of t h e  
or, i f  the dimensional quant i t ies  a re  again 

The second equation of motion i s  therewith exhausted and does not 
have t o  be considered further.  Using again the dimensional quant i t ies  
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I 

I 

one now makes the Navie-tokes differential equations assume the following 
simplified f o m :  

Boundary conditions: y = 0: u = v = 0 
y = o a t  u = u  

The pressure in the boundary layer, which is dependent only on x, 
determined from the potential flow U (x, t), assumed to be known 
according to Bernoulli's equation. 

is 

or  (8.4) 

P + e u2 = P, + 2 u * for stationary flow 2 2 0  

- -  1 = u a + a for nonstationasy flow 
P ax b~ at 

With the potential flow known, the equation syetem (8.3) represents 
a system of two equations with the two unknowns u and v. 

Numerical example: In order to help clarify the concepts a numerical 
example is given for the thickness of the boundary layer. 
What is the boundary layer thickness, for instance, in the caBe of the 
plate in longitudinal flow at the distance 2 = 100 centimeters from the 
leading edge? Let the velocity be u, = 30 meters per second and the 
kinematic viscosity for air V = 0.14 X lo4 meters square per second; 

The problem is: 

then the Reynolds number is R = Uo 2 = 2.1 X lo6 and fi = 1.45 X lo3. 
A numerical factor is still missing in the formula (8.2) for the boundary 
layer thickness. 
calculations w i l l  show, five, provided one understands by the boundary 
thickness 6 that distance from the surface where the velocity has the 
value 0.99 uo. Thus a calculation by the formula 

For the plate in longitudinal flow it is, as later 
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r e su l t s  f o r  the present case i n  a boundary layer  thiclmess 6 = 3.45 mm. 
It should be added tha t  the Reynolds number i s  already so large t h a t  the 
boundary layer  a t  the end of the p l a t e  would be turbulent. The t rans i t ion  
from laminar t o  turbulent l i e s  fur ther  upstream, and a t  t h i s  point the 
boundary layer  thickness would then be somewhat smaller than the value 
determined above. 

Fourth lec ture  on December 22, 1942 

Physical Sunrmary and Conclusions 

The physical content of the considerations so far can be summed up 
i n  the following sentences: 

1. In  a very th in  layer on the body, the boundary layer,  the 
velocity passes f romthe  value zero a t  the surface t o  the 
value which the potent ia l  flow would have i n  the neighborhood 
of the surface. 

2. The pressure i n  the boundary layer  i s  pract ical ly  independent 
of the coordinate normal t o  the surface and equals the 
pressure of the potent ia l  flow along the surface. 

3. In the boundary layer the only f r i c t i o n  force t o  be taken in to  
aU consideration i s  the shearing s t r e s s  T = p -. 
aY 

4. (without proof) The curvature of the surface may be neglected 
i n  the boundary layer as long as the radius of curvature i s  
large compared with the boundary layer thickness (Boltz, 
Thesis, (reference 9 ) ) .  

5 .  A l l  these considerations a re  va l id  only as long as no separation 
of the flow from the surface occurs. 

Without integration of the boundary layer  equations on6 can d r a w  from 
these ssntences important physical conclusions as t o  the flow pattern: 
In particular separation occurs i f  a transport  of boundary layer  material 
i n to  the in te r ior  of the f l u i d  takes place. If a region w i t h  pressure 
increase ex is t s  along the body contour, the retarded f l u i d  i n  the boundary 
layer i s  i n  general, because of i t s  small kinet ic  energy, not able t o  
penetrate too far in to  the region of higher pressure. 
l a t e ra l ly  from the region of higher pressure, separating from the body, 
and i s  qeflected into the in t e r io r  ( f ig .  25). 
one defines the b.oundary between forward flow and reverse flow of the 
layer nearest  the surface, thus 

It then withdraws 

As  the point of separation 
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point of separation: (e) = o *  (8 .5)  
y=o 

Determining when and where separation occurs requires f o r  each case the 
integration of the boundary layer equations. 

One can readi ly  understand tha t  f o r  the velocity prof i le  u(y) a t  
the separation point and f o r  a l l  velocity prof i les  i n  the decelerating 

flow ( 2  > 0) an inf lect ion point* must be present. From equation (8.3) 

namely, for  the surface y = 0 there follows immediately the re la t ion  

The curvature of the velocity prof i le  a t  the surface therefore exchanges 
signs with the pressure gradient. Thus f o r  flow with pressure decrease 

accelerated flow 0- ap eo) ,  (3) < 0 is val id  and therefore 
surf ac e 

ax 
a2u 
aS2 

( 
a lso  - < 0 i n  the en t i r e  boundary layer (fig. 26). For the region 

> 0. of the pressure increase f l o w ,  Q dx > 0) (2%) 
b2 surface 

However, since 

d2U <O, there must 

a Y  
layer  a point where 

i n  any case a t  larger distances from the surface 

exist ,  f o r  decelerating flow, within the boundary 

- -  acu - 0 (inflection point)  ( f ig .  27). For 
as2 

decelerating potential-  flow the boundary layer  prof i le  has, therefore, 
an inf lect ion point. Since the separation p ro f i l e  with vanishing surface 
tangent must necessarily have an inflection point, it follows tha t  
separation can occur only when the potential  flow i s  decelerating 

(2 >O). 
~~ ~ - 

* The velocity prof i le  at  the point of separation therefore starts 
w i t h  a vanishing tangent (fig. 2 5 ) .  Velocity prof i les  behind the point 
of separation have reverse flow i n  the neighborhood of the surface ( f ig .  25). 

** The presence of an inf lect ion point i s  s ignif icant  for thk 
s t a b l l i t y  of the velocity prof i le  ( t ransi t ion from laminar t o  turbulent, 
compare chapter XXI Par t  11.) 
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I f  separation 18 present, the potent ia l  flow can no longer envelop 
the body closely everywhere. 
deviates considerably from tha t  given by the potent ia l  theory. 
cases t h e  pressure variation impressed on. the boundary layer can i n  
most cases be determined only empirically, because the f r i c t ion le s s  outer 
flow i t s e l f  depends on the complicated phenomena connected with the 
separation. 

Thus the  pressure dis t r ibut ion sometimes 
In such 

Thus the boundary layer  theory explains a l so  the f a c t  t h a t  i n  
addition t o  the f r i c t iona l  drag a pure pressure drag, called "form drag," 
appears. 

I n  regard t o  l a t e r  calculations the following explanation sha l l  be  
given: I f  equation (8.3) i s  different ia ted with respect t o  y, there 
r e s u l t s  fo r  stationary flow 

ap Due t o  - = 0 and t o  the boundary conditions u = v = 0 one obtains 

from equation (8.7) f o r  the surface y = 0 the r e l a t ion  

= o  

which i s  val id  f o r  a l l  stationary boundary layer  prof i les  (pressure 
increase and pressure decrease). 

Frictional Drag 

As a re su l t  of the integration of the boundary layer  equation one 
obtains the velocity dis t r ibut ion and the separation point and can there- 
from calculate the par t icular ly  interest ing surface f r i c t i o n  drag i n  the  
following manner. The f r i c t i o n  drag WR r e s u l t s  f romthe  integration of 
the surface shearing s t r e s s  over the surface of the body. For the  plane 
case one obtains, with the sy~~ibols according t o  figure 28, f o r  the f r i c t i o n  
drag 

I WR = 2b To COB 9, dS (8 .9)  
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The integration has t o  be extended over both s ides  of the surface from 
the stagnation point t o  the separation point b s ign i f ies  the (8 = Z*), 

height of the cyl indrical  body. Because COB cp de = dx and To = (g)o 
one obtains f o r  the f r i c t i o n  drag 

(8.10) 

This integration a l so  has t o  be extended along both sides of the body. 
For calcuiation of the f r i c t i o n  drag one needs, therefore, the velocity 
gradient at the surface. 

I of the boundary-layer d i f f e ren t i a l  equations. If the separation point 
appears ahead of the trailing edge, the formula has t o  be applied only 

turbulent t rans i t ion  which i s  located furthbr upstream. 
t rans i t ion  point ex is t s  turbulent surface f r i c t i o n  dreg. I n  order t o  
obtain the t o t a l  drag, the form drag has t o  be added t o  t h i s  f r i c t i o n  
drag; however, the form drag cannot be obtained from the boundary layer  
calculation i n  a simple manner. 

The l a t t e r  can only be obtained by integration 

I up t o  the separation point or, sometimes, up t o  the point of laminar-to- 
Behind t h i s  

CFUSFTER IX. EXACT SOLVTIONS OF THE BOUNDARY LAYER 

EQUA!I'IOT?S FOR THE PLANE PRCBLEM 
I 

a. The F la t  P la te  i n  Longitudinal Flow 

One of the simplest examples for the application of the boundary 
layer equations (8.3) i s  the f l o w  along a f la t  plate .  
begin a t  x = 0, extend pa ra l l e l  t o  t h e  x-axis, and be in f in i t e ly  
long (f ig .  29). 
be treated.  
i n  h i s  Cijttingen thesie.  
i s  constant, thus 
therefor e 

Let the plate 

Let the stationary flow of the  f r e e  stream velocity Uo 
The calculations for it were made by H. B'lasius (reference 8) 

I n  t h i s  caee the velocity of the potent ia l  flow 
dp/dx L 0. The boundary layer  equations (8.3) become 

11 
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with the  boundary conditions 

y = o :  u = v = o  

y = w :  u = uo 
( 9 . W  

Since the en t i r e  system has no charac te r i s t ic  length, t he  assumption 
suggests i t s e l f  t h s t  the velocity p ro f i l e s  a t  various distances 
a f f ine  t o  each other, so t h a t  one may write 
6 = 6 ( x )  
with the length of run. 
thickness i n  the  following manner: 

x are 
Let there in  

represent a measure of the  boundary layer  thickness, increasing 
One a r r ives  a t  an estimate of the  boundary layer  

u/Uo = cp (y/6). 

According t o  the  former exact solutions of NavierStokes equations 
(chapter V I ) ,  f o r  instance f o r  t he  non-stationary problem of the  surface 
suddenly s e t  i n  motion, 

with t denoting the t i m e  since the beginning of the  motion. Applied 
t o  the  present stationary problem one may subs t i tu te  fo r  the t i m e  t the  
time required by a f l u i d  pa r t i c l e  t o  t rave l  from the leading edge of the 

and one has, therefore,  for p la t e  t o  the  point X. This t i m e  t = - 
the  present case 

X 

UO 

Thus it i s  useful t o  introduce fo r  the  distance from the  surface y t he  
new dimensionless coordinate q = y/6 o r  according t o  equation (9.2) 

For fur ther  calculat ions one observes that 

The continuity equation i s  again integrated by introduction of the  stream 
function +; for t h =  l a t t e r  one assumes 
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Accordingly f ( v )  i s  a dimensionless s t rean function; fo r  the velocity 
components one obtains from equation (9.4) 

Furthermore one obtains 

By inser t ion of these values i n  equation (9.1) there r e s u l t s  

or, a f t e r  simplifying, the following d i f fe ren t ia l  equation fo r  the stream 
function f(7) 

f f "  + 2 f ' I 1  = 0 (9.8) 

Becauss of equation (9 . la )  and Of equations ( 9 . 5 )  and (9.6) the boundary 
conditions a re  

For ths  present case therefore, there r e s u l t s  from the two p a r t i a l  
d i f fe ren t ia l  equations (9 . l ) ,  by tne similari ty transformation (equation 
(9.3 ) ) , an ordinary non-linear d i f fe ren t ia l  equation of the t h i r d  order. 
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The three boundary conditions according to equation (9.9) are sufficient 
for a unique determination of the function f(q) from this equation 

A particular solution of the differential equation (9.8) is the 
solution 

f = q + constant 
This solution corresponds to the potential flow; we shall revert to it 
presently. 

The general solution of the differential equation (9.8) cannot be 
given in closed form. 
methods or by series developments. Blasius obtained the solution by a 
power series development near 
near q =a, which are combined at an appropriate point. Since the 
method of calculation is characteristic of the solution of the boundary 
layer differential equations it will be described in more detail. 
power series around q = 0 

Therefore one must calculate it either by numerical 

q = 0 and an asymptotic development 

The , 

is formulated in the form 

A2 A 
f(q) = A. + + 7 q2 + 3 13 + . . . 

2. 3! 

Because of the boundary conditions for  q = 0 one has immediately 

A. = Al = 0 
i 

By insertion of the equations (9.10) into the differential equation (9.8) 
one obtains 

3 
3 3. 2A + 7 2A4 + 2%) + % (4A2 A3 + + . . . = 0 

In order to make the equation (9.10) represent a solution of the differ- 
entia1 equation it is required that in the last equation a l l  coefficients 
of the single powers of 7 van:sh. First, one has immediately A3 = A4 = 0" 
and further 

I 

Vhis also follows at once from equations (8.6) and (8.8). 
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. . . .  
Thus only the coefficients %, A,-, %. . , . are different from zero. . - 
The coefficient 
condition for 
As, A8, All. . . can all be expressedin terms of 
sets up, with = UJ a series for f(q) which progresses by powers 

A2 remains at first undetermined since the third boundary 
7 = 00 was not yet satisfied. The remaining coefficients 

A2. One therefore 

of 7 3 , in the following form: 

n=o 

The results for the first coefficients are: 

co = 1; c 1  = 1; c2 = 11; 

C = 375; C4 = 27897; C5 = 3 817137 3 

The asymptotic development near 7 = 00 is formulated in the form 

f = f l + f  + . . .  2 (9.12) 

where the higher approximations are to be small in comparison with the 
Lower approximations, for instance f << fl. The first asymptotic 
approximation to correspond to the potential flow is, as was mentioned 
above , 

2 

f1=7-B (9.13) 

For this approximation flPP = 0, and one obtains therefore by replacing 
the quantiky ff" in the differential equation (9.8) by flf2" the 
following equation for  the second asymptotic approximation: 
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(T) - p) f; + 2f;t = 0 

'2 - = A  ( a - 7 )  
f; 2 

log f; = - 1 8T) - q  1 2  7 + c 
2 

2 If one substitutes for the integration constant 
(y 

C = -a 14 + log 7, 
is thus a new integration constant) one obtains 

and after integration 

(9.14) 

Because f? (m) = 1 and f f  (a) = 0, the solution f? = f? + f; 
satisfies the third boundary condition f* (a) = 1. Another integration 
of equation (9.14) gives as second asymptotic solution for 

1 2 1 

f = fl + f2 

This solution still contains two integration constants and y 
corresponding to the fact that only one of the three bowldary conditions 
was satisfied. The asymptotic solution can, in the same manner, be 
improved still farther by equating 
equation for 
unnecessary. 

f = fl + f2 + f 
was solved by BhBiUB; a more detailed discussion is 

The differential 3' 
f3 

These two solutions, the power series near T) = 0 according to 
according to equation (9.11) and the asymptotic solution near 

equation (9.15), now have to be Joined together and the three integration 
T) = a  
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constants a, p and 7 have thereby t o  be determined. This i s  effected 
i n  the following way: A t  a point ? = 7 where both solutions a r e  

serviceable, f ,  f '  and f"  f romthe power s e r i e s  and tha asymptotic 
solution a re  brought t o  agreement. Because of the d i f f e ren t i a l  
equation (9.8) the higher derivatives w i l l  then automatically agree. 
I n  t h i s  manner one obtains three equations for the three unknown 
integrat ion constants. 

1' 

The numerical calculation gives 

u = 0.332; p = 1.73; y = 0.231 

A t ab le  for  
i s  given i n  t ab le  2". 
u/Uo = f ' (7 )  
I n  comparison with the stagnation point p ro f i l e  ( f ig .  16) it is s t r ik ing  

s l i g h t  curvature. _ A t  the surface itself it has an in f lec t ion  point, t h a t  

f, f', f "  taken from a t r e a t i s e  by L. Howurth (reference 18) 
The veloci ty  dis t r ibut ion in  the  boundary layer  

according t o  equation (9 .5)  is  represented i n  figure 30. 

I t h a t  the veloci ty  p ro f i l e  of the  p la te  flow near the  eurface has a very 
1 

adu 
as2 

is, for y = 0: - = 0. 

The transverse component of the velocity i n  the  boundary layer  
given by equation (9.6) is p lo t ted  i n  figure 31. 
outside of the f r i c t i o n  layer,  f o r  ?-,a 

It is  noteworthy t h a t  

v = v, = 0.865 U o / F  

The f a c t  tha t  on th s  outer edge of the  boundmy l ayer  the transverse 
component v # 0 
the body due t o  the boundary layer  thickness increasing downstream. 
very la rge  distances from the wall (far i n  the poten t ia l  flow) the 
boundary layer  solution does not go over exactly i n t o  the undistrubed 
poten t ia l  flow u = U,; 
s l i g h t )  deficiency of the boundary layer solution. 

i s  caused by the deflection of the poten t ia l  flow from 
For 

. 

v = 0. This has t o  be to le ra ted  as a (very 

For the present case a separation of t h s  boundary layer  does not 
e x i s t  since the pressure gradient equals zero. 

Fr ic t ion  Drag 

From the solution given above the  surface f r i c t i o n  drag of the 
p h t e  ir? longitudinal flos;  ie t o  be calculated. 
the f r i c t i o n  &rag 4 0 , ~  one s i d e  of the plate  i s  

According t o  equation (8.9) 

* See appendix,chapter XII. 
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P2 P2 

with b denoting the width, 
equations (9.7) and (9.11) 

&=0 

2 the length 

cs>, = 
u o i t  f"(0) = 

Therewith the local surface shearing stress 
- 
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(9.16) 

of the plate. According to 

is 

The friction drag according to equation (9.16) is therewith 
2 

W = cylb U o f i  

J x=o 

and therefore the drag of the plate 

2 W = k a b  

= 2a b U , d x  
F 
wetted on both sides is 

= 1.328 b Uo pp 2 T i  
If one introduces in the customary manner a dimensionless drag coefficient 
by the equation 

(F = 2 b 2 = wetted area) 2w 

F Uo2 
c w =  

one ob-tains for the drag coefficient the formula 

cw - - 1.128 
(Re = T) 6 

(9.19) 
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Displacement Thickness of the  Boundary Layer 

By the  development of t he  boundary layer  on the  plate ,  which 
increases downstream with E, the  potent ia l  flow i s  deflected outward 
from the  surface by an amount E*, which i s  ca l led  the  displacement 
thickness of the  boundary layer.  It can be eas i ly  calculated from t h e  
veloci ty  d is t r ibu t ion  i n  the boundary layer, as follows: 
a point outside the  boundary layer; then according t o  the def ini t ion 
f o r  8* 

L e t  y1 denote 

or 

According t o  equation (9 .5 )  

P yl 

Since the  point 

f o r  f(7) the  f irst  approxinstion of the asymptotic solution according 
t o  equation (9.13), thus 

'1 = T~ l i e s  outside of t he  boundary layer,  one can put 

T k ~ s  one r i n d s  f'?r the displs:emnt thickness of t h s  bcwdary layer 
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The distance f romthe  surface y = 6* i s  a l so  ghown i n  f igure 30. Thus 
the s t reaml ines  of the potent ia l  flow are, because of the f r i c t i o n  
effect ,  deflected outward by t h i s  amount. 

The actual  boundary layer thickness 6 cannot be given accurately 
since the f r i c t i o n  e f fec t  i n  the boundary layer  thickness decreases 
asymptotically toward the outside. The component of velocity pa ra l l e l  
t o  the surface u i s  asymptotically converted in to  the veloci ty  Uo 
of the potent ia l  flow (the function f ' ( 7 )  asymptotically approaches the 
value 1). 
point where the velocity 
according t o  tab le  2, 
boundary layer  thickness 

If one wants t o  define the boundary layer  thickness as the 
u = 0.99 Uo ( f u l l  value), one obtains for it 

Therewith one has f o r  the thus defined 7 = 5.0. 

6 = ' j . O \ i z  

The thus defined boundary layer  thickness equals about three times the 
displacement thickness of t h s  boundary layer.  

Let here a l so  be introduced the value f o r  the momentum thickness 19, 
needed l a t e r .  This l a t t e r  i s  a measure f o r  the momentum loss due t o  
f r i c t ion  i n  the boundary layer  and is, as indicated before i n  equation (6.32), 
defined by the  equation 

Jy=o 

The calculation resul ts ,  because of equation (9.5), i n  

P" 
f ' ( i  - f * ) d v  E = 0.664 

0 

J,=O 

Finally t h e  form parameter becDm2s therewith 
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6* 
I9 
- = 2.605 
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Experimental investigations of the laminar boundary layer  on the f l a t  
p la te  were performed by B. G. van der Hegge Zynen (reference 19) and 
M. Hansen (reference 20). 
were well confirmed. 

In a l l  essent ia l  points the theoret ical  r e s u l t s  
The measurements showed t h a t  the laminar boundary 

layer  e x i s t s  t o  about the Reynolds number (Uo x/v) = 3.5 t o  5 x 105, 
c r i t  

if x denotes the  length of run of the boundary layer. For larger  
Reynolds numbers t rans i t ion  t o  the turbulent s t a t e  of flow takes place. 

F i f t h  lec ture  on January 5 ,  1942. 

b. The Boundary Layer on the Cylinder (symmetrical case) 

The integration method of Blasius given i n  the previous section 
w a s  used by Hiemenz ( thes i s  Cijttingen 1911) f o r  calculating the boundary 
layer  on the circular  cylinder. 
by Howarth (reference 15) t o  the general case of a cyl indrical  body of 
a rb i t ra ry  cross section. This method w i l l  be b r i e f ly  presented f o r  the 
symmetrical case. 
symmetrical cross section i n  a flow approaching i n  the direction of the 
symmetry axis with the velocity Uo. Let x be the a rc  length along 
the contour, measured f romthe  f ront  stagnation point, y the ve r t i ca l  
distance from the surface. Let the potential  flow U(x) be given by 
i t s  power ser ies  development i n  X. At the stagnation point (x = 0) ,  
U(x)  = 0, 
se r i e s  are d i f fe ren t  f’rom zero. Therefore: 

The same method was l a t e r  fur ther  extended 

One considers ( f ig .  32) a cyl indrical  body with 

and f o r  the symmetrical case only the odd te rns  of the power 

u(x) = u x + u x 3 t u x 5  + . . 
1 3 5 

. . . depend solely on the shape of the u3 , The coeff ic ients  ul, 

body and are  therefore quant i t ies  known f’rom the potent ia l  flow, 

The stationary boundary layer equations according t o  equation (8.3) 
a re  a l so  val id  f o r  t h i s  case with a curved surface and therefore read: 
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3 u = u x f ' + 4 u x f t + 6 x 5  
1 1  3 3  

From equation (9.22) one obtains f o r  the  pressure term: 

2 

(9.28) 
u3 

5 5  1 5 u g ' + - h '  + .  . . 

u a'= dx u1 [ulx + 4 ~ ~ x 3  + (6 u5 + $)x5 + . . 1 (9.24) 

The continuity equation i s  again integrated by the  stream function: 

It i s  now necessary t o  f ind  a su i tab le  formulation f o r  t he  veloci ty  
dis t r ibut ion u(x, y),  v(x, y) and therewith f o r  the  stream 
function $(x, y).  I n  analogy t o  equation (9.22) a power series i n  x 
suggests i t s e l f  f o r  u(x, y )  
a re  dependent on y. It is  important t o  f ind  a form where the  coeffi- 
c ien ts  ( o r  functions) dependent on y 
is, need not  be calculated anew f o r  each shape of body, bu t  may be calcu- 
l a t ed  once fo r  a l l .  
formulation. 

as w e l l ,  with coeff ic ients ,  however, which 

have a universal  character, that 

Howarth (reference 15) succeeded i n  finding such a 

For the distance from the  surface one introduces the  dimensionless 
variable : 

The expression (9.24) f o r  the  pressure term suggests t h a t  t he  following 
equation be selected f o r  $ 

This yields: ( *  = di f fe ren t ia t ion  with respect t o  7 ) :  
r- - 

*One obtains t h i s  equation from tha t  of Blasius according t o  
equation (9.3) by subst i tut ing f o r  
equation (9.22). 

Uo the f irst  term of the  se r i e s  
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2 

= u f '  + 12u X2f' + jOx4 E 5 g ;  + h . 1  + . . . (9.29) 
3 3  ul 5 ax 1 1 

1 xf" + 4u x 3 f" + 6x 5 
1 1  3 3  

u g " + -  u32 h"] + . . } (9.30) 
5 5  u1 5 

After inser t ion  of the  expressions (9.24) and (9.28) t o  (9.32) in to  the  
first equation (9.23) one obtains by comparison of the  coeff ic ients  a 
system of ordinary d i f f e ren t i a l  equations f o r  t he  unknown functions 

f3,  
fl, 

g5, 
h5, . . . . , which appears as followa: 

terms with 

u x  
1 

4u u x3 
1 3  

6ulu5x 5 

6u 2x5 
3 

gives the  d i f f e ren t i a l  equation 
2 

f - f  f"  = 1 + f '" 
1 11  1 

4 f ' f '  - 3f"f - f f" = 1 + f'** 
1 3  1 3  1 3  3 

6f'h' - 5f"h - f h" = - 1 + h'" - 8(f' 2 - f f")  
1 5  1 5  1 5  2 5 3 3 3  

Formulation of the flow function according t o  equation (9.27) has 
thus accomTlished the elimination of  t h e  coef f ic ien ts  depending on body 
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shape (ul, u3, . . .) from the  d i f f e r e n t i a l  equations-fdr the  functions 

fl, f3' . . which thus now have a universal  character. 

The boundary conditions f o r  the  functions fl, f . . . follow - 3' 
from 

by comparison of equation (9.28) with equation (9.22); they a r e  

g5 = = O 
f = f ' = O ;  f = f ' = O ;  

1 3 3  
7 = 0 :  

h 5 = h 5 = 0 ;  . . . 
(9.34) 

h ' = O ; . . .  1 7 =n :  f '  = 1; f 1  = 4' g; = g; 
1 3 

The d i f fe ren t ia l  equations (9.33) are a l l  of the  t h i r d  order, and 
equation (9.34) gives t b e e  boundary conditions f o r  each. 
t i a l  equation f o r  f (7) 
e n t i a l  equation (6.2 8 ) obtained i n  chapter V I  f o r  the  etagnation point 
flow: fl= cp; 7 z E ,  as follows by comparison of equation ( 6 . 2 6 ~ ~ )  
with equation (6.26). 
equation (9.33) are l inear ,  with the coeff ic ients  determined by the  
functions of the preceding approximations. 

The differen- 
i s  non-linear and i s  ident ica l  with the  differ-  

- 
A l l  the  remaining d i f f e ren t i a l  equations i n  

The solutions of the  d i f f e ren t i a l  equations (9.33) a re  bes t  obtsined 
by numerical integration. The functions f l  and f3  were already 
calculated by Hiemenz (reference 10). 
t he  tables  f o r  f3  and recent ly  N i l s  Fr'dssling (reference 16) calculated 
g and h as well. The f i  which i s  ident ica l  with cp' according t o  

equation (6.28) w a s  already given i n  f igure  16. The function f j  c a i  be 
seen f rom f igure 33, the functions g' and h' from f igure  34. The 

numerical values are  compiled i n  tab le  3. 

Howarth (reference 15) improved 

5 5 

5 5 

Concernlng th s  appl icabi l i ty  of t h i s  calculation method it must be 
mentioned t h a t  fo r  slender body shapes the  se r i e s  f o r  
converge poorly. The reason is, t h a t  f o r  these body shape3 U(x) h a s  
a vary steep ascent i n  the neighborhood of the stagnation point ( f i g .  3 5 ) ,  
while showing a ra ther  f l a t  curve fur ther  on. 
developed readi ly  in to  a Taylor se r ies .  For such body shapes many more of 
the  functions of the differential-equation system (9.33) would be required 

U(x) and u(x,y) 

Such a function cannot be 
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than have been calculated so far. 
circular cylinder, the convergence is considerably better so that one 
proceeds rather far with this calculation although not always up to* the 
point of separation. 

For blunt bodies, as for instance the 

Howarth (reference 15) also performed the corresponding calculation 
for the unsymmetrical case where the even coefficients also appear in 
the power series f o r  U(x). 
at an angle of attack and quite generally for any unsymmetrical body. 

This is the case f o r  a symmetrical body 

Fr6ssling (reference 16) made the application to the rotationally 
symmetrical case. 

Circular Cylinder 

The boundary layer on the circular cylinder will be treated as an 
example for the application of this method. 
took a pressure distribution measured by him as the basis for this case, 
we shall here calculate with the potential-theoretical pressure distribution. 
The velocity distribution of the potential flow reads, with the symbols 
according to figure 36, 

Whereas Hiemenz (reference 10) 

The power series development gives: 

In comparison with equation (9.22): 

. . .  2 uo 2 uo' 
u3 = -53 ;  u5 = 5Rsj uO u1 = 2 -; 

R 

Therewith follows from equation (9.26): 

(9.36) 

(9.364 

It fOllOWt3 that for the velocity distribution from equation (9.28) 
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I ~ 

One further calculates  the posit ion of the point xA which 

is, according t o  equation (8.5) determined by = 0. Therewith 

r e s u l t s  from equation (9.36): 
y=o 

X 
fY(0) - A - - f"(0) (27 + . . . = 0 

R 31 3 (9.384 

With t h s  numerical values t 0 )  = 1.23264; f"(0) = 0.7246 one finds:  
fl( 3 

* X 
A = 1.60; (PA = 92O R (9.39) 

Hiemenz (reference 10) based h i s  calculation on h i s  experimental 
pressure dis t r ibut ion;  he calculated the  separation point t o  be a t  
cp = 82O, whereas h i s  measurements gave cp = 81'. This result i s  

considerably d i f fe ren t  from t h a t  obtained with the  potential-theoretical  
pressure dfs t r ibut ion.  
c i rcu lar  cylinder the experimental and the  potential-theoretical  pressure 
dis t r ibut ion i n  the neighborhood of the separation point d i f f e r  great ly .  

A A 

The reason i s  t h a t  f o r  a body as blunt  as the 

The method described here of calculat ing the  boundary layer  by a 
power-series development s t a r t i ng  from the stagnation point has found 
but l i t t l e  acceptance because of the  extensive calculat ion required. 
It is, however, indispensable f o r  fundamental considerations, since there  
ex i s t  no other exact solutions of the d i f f e ren t i a l  equations of the  
boundary layer  f o r  the flow about a body. 

Thus approximation methods came i n t o  use f o r  the  prac t ica l  per- 
formance of boundary layer  calculations; they w i l l  be discussed i n  the  
following chapter. It i s  t rue  t h a t  t h e i r  accuracy i s  sometimes consider- 
ably lower than t h a t  of the previously discussed exact solutions.  

c.  Wake behind the F l a t  P la te  i n  Longitudinal Flow 

The application of the  boundary layer  equations i s  not  absolutely 
li.mited to  the  presence of so l id  w a l l s ;  
there  i s  present within the flow a layer  i n  which the f r i c t i o n  e f fec t  i s  

They may a l so  be applied i f  

W h i s  r e s u l t  var ies  somewhat i f  i n  the  series development 
equation (9.38a), one takes fur ther  terms in to  consideration. 
f o r  t h i s  purpose one would have t o  calculate  a t  l e a s t  up t o  the  term x7. 

However, 
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predominant. This i s  the case fo r  instance when within the flow two 
layers  of d i f fe ren t  ve loc i t ies  adjoin, as f o r  instance i n  the wake region 
behind a body or a t  the outflow from an opening. 
chapter we sha l l  t r e a t  two examples of such flows which we sha l l  l a t e r  
encounter again i n  the discussion of turbulent flows. 

In  t h i s  and the following 

4 

The wake flow behind the f l a t  plate i n  longitudinal flow is  chosen 
as the first example ( f ig .  37). A t  the t r a i l i n g  edge of the p la te  the 
two boundary layer prof i les  grow together and form a "wake profile" the 
width of which increases with distance while the velocity decrement a t  
i t s  center decreases. 
the drag of the  body. 
d i s t r ibu t ion  i n  the wake at  a large distance from the body i s  not dependent 
on the shape of the body, whereas the velocity dis t r ibut ion very close 
behind the body natural ly  depends on the boundary layer of the body and 
on any exis t ing separation. 

The s ize  of the "wake" i s  d i rec t ly  connected with 
Otherwise, however, the form of the velocity 

From the velocity dis t r ibut ion measured i n  the wake one may cal- 
culate  the drag by means of the momentum theorem i n  the following manner. 
The momentum theorem s ta tes :  The variation of the momentum with time 
( = momentum flow through a control area fixed i n  space) equals the 
sum of the resul tant  forces. 
1. Pressure forces on the control area, 2. Extraneous forces, which a re  
t ransferred from sol id  bodies t o  the flowing f luid,  f o r  instance the 
shearing s t r e s s  a t  the surface which gives the f r i c t i o n  drag. 
present case the control area 
Let the boundary 

from it tha t  it l i e s  everywhere i n  the undisturbed velocity 
more, the  r ea r  cross section 
the s t a t i c  pressure there has the aame undisturbed value as i n  f ront  of 
the plate .  Then the pressure i s  constant on the en t i re  control area, so 
t h a t  the pressme forces make no contribution. 
momentum flow through t h i s  control area one has t o  consider that ,  due t o  
continuity, f l u i d  must flow out through the boundary 

difference between the larger  quantity flowing through the cross 
section AA1 and the smaller quantity flowing through the c r o w  
section BB1. The cross section AB does not make a contribution t o  the 
x-momentum, since for  reasons of symmetry the transverse velocity on it 
equals zero. 
entering momentums counted as positive, outgoing ones as negative. 

By resultant forces one has t o  understand: 

For the  
AAIBBl i s  placed as indicated i n  figure 38. 

AIBl which i s  paral le l  t o  the p la te  be so f a r  d i s tan t  

Uo. Further- 

BB1 i s  t o  l i e  so far behind the p la te  t h a t  

In caldulating the 

AIB1, namely the 

The momentum balance i s  given i n  the table  below, with 
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Cross section 

A B  

A %  

B1 

AlBl 

E= 
Control area 

Mass 
[m3/sec] 

0 

- b  u d y  r 

Mass 
= o  

Momentum flow i n  x-direct ion 
= volumexdensi tyxveloci ty  

0 

b 

h 

- P p .  

XMomentum Flow 
= w  

The t o t a l  momentum loss of the flow f o r  the  present caee ,equals the  
drag W of,one s ide of the plate .  Thus one obtains 

JO Jo 

The integration therein may be extended from y = 0 t o  m, instead of 
from y = 0 t o  h, since fo r  y >  h the integrand i n  equation (9.40) 
vanishes. 
theref ore  : 

For the drag of the p l a t e  wetted on both s ides  one obtains 
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I +O0 

In  equations (9.40) and (9.41) the integrals  a re  t o  be extended over the 
wake as indicated a t  a distance 'behind the p la te  where the s t a t i c  pressure 
has i t s  undisturbed value. However, one may natural ly  apply equations 
(9.40) and (9.41) a l so  t o  the boundary layer  on the p la te  a t  a cer ta in  
point x; 
leading edge t o  t h i s  point, 
and (9.41) represent physically the momentum loss due t o  the f r i c t i o n  
effect .  
in tegra l  a l so  the momentum lose thickness 
(compare equation (6.32)). 

then they give the drag of the par t  of the p la te  f romthe  
The definite integral6 i n  equations (9.40) 

As mentioned before, it i s  customary t o  introduce f o r  t h i s  
4 by the following equation 

2 uo 4 =I u (u, - u) dy (9.42) 

Therewith the formula f o r  the drag may also be written, by comparison 
with equation (9.40): 

2 
W = b p U 0  4 (9.43) 

The velocity dis t r ibut ion i n  the  w a k e ,  part icular ly  a t  large 

This calculation must be performed i n  two steps: 
distance behind the p la te  in  longitudinal flow (f ig .  37) i s  t o  be 
calculated next. 
1. By a development "from the front", t h a t  is, by a calculation which 
follows the fur ther  development of the  Blasiua4oundary layer  prof i le  
present a t  the trailing edge of the plate. 2. By a development "from 
the rear" t ha t  is, by an  asymptotic calculation f o r  the wake, under the 
assumption tha t  the difference velocity 

x 

is smaii. 

The first calculation w a s  performed by S. Goldstein (reference 21) 
and i s  very troublesome; the second'was indicated by Tollmien (reference 3) 
and yields  ra ther  simple l a w s ,  i n  particular a l so  an exact solution of the 
d i f f e ren t i a l  bo-mdarg layer equation. Since such exact eolutions a re  
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comparatively rare and since, moreover, the asymptotic l a w  f o r  the wake 
applies n o t  only f o r  the f la t  p la te  i n  longitudinal flow but f o r  any 
arbi t rarg body shape, t h i s  asymptotic solution w i l l  be t reated here' 
somewhat more thoroughly. The wake velocity ul(x, y)  introduced i n  
equation (9.44) is assumed t o  be so small i n  comparison t h  the f r e e  
stream velocity Uo that the second-power terms (ul/LJo? a re  negl igible  

re la t ive  t o  1. Moreover, the pressure term dp/dx in the boundary layer  
equation i s  t o  be se t  equal t o  zero f o r  the first asymptotic approximation. 
Therewith the d i f f e ren t i a l  boundary layer  equation (8.3) becomes, f o r  the 
present case: 

au, a2u1 

as2 
uo-=v- ax 

With the boundary conditions: 

(9.45) 

y = m: u1 = 0 (u = uo) 

For the solution of the d i f f e ren t i a l  equation (9.45) one introduces as 
before in the p la te  flow according t o  Blasius? equation (9.3) the new 
variable 

Further, one uses fo r  u the equation: 
1 

(9.47) 

The di8tanCe 

dimensionless by aividing by the p la te  length. The power - - 2 fo r  x 

ie given by the  f ac t  t ha t  the momentum in tegra l  which, according t o  
equation (9.4l),gives the p la te  drag must be independent of x. With 
the second-power t e r n  neglected the drag of the p l a t e  Wetted on both 
s ides  is, according t o  equation (9.41): 

x f romthe  t r a i l i n g  edge of the p la te  is thus made 
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One f inds  further:  

1 

-0 

and therewith: 

2 W = b p U ,  

-a 

The calculation of the single terms i n  equation (9.45) gives: 

- =  &l 

a Y  vx 

- L  
2 1  
X 

/ 

By inser t ion in to  equation (9.45) me cbtains a f t a r  d i v i ~ i o n  by 

c uo ( X m -  ' x-' the follobing d i f fe ren t ia l  equation f o r  the velocity 
dis t r ibut ion g(7) : 

1 2 

(9 .52)  

(9.50) 

(9.51) 
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with the boundary conditions: 

q = 0: g' = o ;  q =a: g = o  

A single integration gives: 

where, because of the boundary condition at the integration 
constant K must be zero. Repeated integration gives the solution: 

q = 0, 

g = e  -I (9.53) 

where a multiplicative integration constant may be put equal to one 
without limiting the generality since the velocity distribution ul 
still contains, ,according to equation (9.47), the multiplicative free 
constant C. This constant C is determined from the consideration 
that the plate drag obtained from the momentum loss (equation (9.50)) 
must be the same as the frictional drag of the plate. First, 

d --OI J -" 

and therewith fromequation (9.50): 

v 'O 
On the other hand, the friction drag of the plate wetted on both sides 
was according to the solution of Blasius (equation (9.18)) 

2w = 1.328 p uo 2E 
Therefrom follows 2C \ In -=  1.328 and 
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0.664 c = -  
\I. 

73 

(9.54) 

Thus the  f i n a l  solution fo r  the wake velocity f o r  the f la t  p l a t e  i n  
longitudinal flow becomes: 

(9 .55)  

' 

The veloci ty  d is t r ibu t ion  of t h i s  asymptotic l a w  i s  represented i n  
f igure  39. 
is  ident ica l  with Gauss' e r ror  function. 
the l a w  according t o  equation (9.55) is val id  only f o r  la rge  distances 
behind the plate ,  according t o  the calculations by Tollmien (reference 3 )  
f o r  x r  32. 

It i s  noteworthy t h a t  the function f o r  the veloci ty  d is t r ibu t ion  
I n  keeping with the  hypothesis 

The development of the wake from the  f ront ,  performed by Goldstein 
i s  va l id  only f o r  comparatively small x/2. However, f o r  intermediate 
x/t  
the veloci ty  d is t r ibu t ion  i n  the ent i re  wake. 
Tollmien (reference 3 ) .  

both solutions can be joined t o  8ome extent, so tha t  one then obtains 
Such a f igure  i s  given by 

Sixth Lecture on January 12, 1942. 

d. The Plane J e t  

A. fur ther  example of a flow without bounding w a l l  t o  which the 
boundary layer  theory i s  applicable i s  the outflow of a j e t  from a hole. 
The problem t o  be t rea ted  i s  the plane s ta t ionary one where the j e t  goes 
out from a long narrow s l o t  and mixes with the surrounding f l u i d  a t  r e s t .  
This i s  one of the r a re  cases where the  d i f f e ren t i a l  boundary layer  
equations may be integrated exactly. The calculat ions were performed by 
H. Schlichting (reference 22) and W. Bickley (reference 3 0 )  and w i l l  be 
discussed a l i t t l e  more thoroughly. 

Due t o  the f r i c t i o n  e f f ec t  the j e t  entrains  a par t  of the  f l u i d  a t  
r e s t  and weeps it along. There r e su l t s  a stream-line pat tern l i k e  the 
one drawn i n  figure 40. Let the x-direction coincide with the  j e t  axis 
m d  +,hs migir; l i e  in the s io t .  It then immediately becomes c lear  t h a t  
the width of the Jet increases with tine distance x and the mid-velocity 
decreases v i t h  the distance x. For the calculat ion the s l o t  i s  assumed 
t o  be i n f i n i t e l y  narrow. In  order t o  make the  volume of flow, together 
w i t h  i t s  momentum, f i n i t e ,  the velocity i n  the s l o t  i s  then i n f i n i t e l y  
large.  Again, as ir, the previous example concerning the wake flow, the 
pressure term 
very l i t t l e  i n  the x d i r e c t i o n .  The smallness of the pressure term can 

dp/dx may be neglected since the presslare var ies  only 
e 
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a l so  be shown subsequently. from the finished solution. Thus the differ- 
e n t i a l  boupdary layer equations f o r  the present case read, according t o  
equation (8.3): 

au mz a2U u - + v - = v -  

as as2 ax 

with the boundary conditions: 

y = o :  v = o ;  5 = 0  au 

y = w :  u = o  

Since the pressure i s  constant, the en t i r e  momentum f l o w  i n  the I- 
direction f o r  control area fixed i n  space (compare f igure 40) must be 
independent of the distance from the hole 
boundaries of the control area a t  so large a distance f romthe  ax is  that 
there  u = 0, then 

x. If one chooses the l a t e r a l  

J = p  I+* u*Q = Constant (9 57) 

It i s  t o  be noted for  the integration of the equation of motion 
equation (9.56) that for t h i s  problem, as before f o r  the p la te  i n  longi- 
tudinal flow, no special length-dimension exists. Thus a f f i n i t y  of the 
velocity prof i les  u(x, y) is  suggested, t ha t  is: with b signifying 
a suitable width of the j e t ,  the velocity prof i les  a re  only functions 
of y/b. Accordingly one uses the following expression f o r  the stream 
function JI: 

* = X P f  (5) = XPf (E) 
X 

(9.58) 
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The two - at first m o w n  - exponents p and q are d e t e d n e d  from 
the conditions tha t  

1. the momentum flow f o r  the x d i r e c t i o n  i s  independent of x 
according t o  equation (9.57), and that 

2. the  acceleration terms, f o r  instance u - al 
ax' 

and the  i n e r t i a  

term i n  equation (9.56) are of the  same order of magnitude 
and hence m e t  be of the  aame degree in I. 

This y ie lds  the  two equations 

It follows 1 t ha t  

Therewith the f i n a l  equations, a f t e r  addition of sui table  constant factors ,  
read as follows: 

Therefrom one obtains, with 

the  following expressions f o r  the velocity components'and t h e i r  derivatives:  
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(9 .63)  

1 4 1 3  
- (27f"-f') aU - = -x ax 9 

By substitution into the differential equation (9.56) there results, 
-5 13 after cancelling the factor - x , the following differential equation 27 

I 
I for the flow function f(7): 

f'* + ff" + f'" = 0 

with the boundary conditions: 

(9.64) 

As for Blasius' plate flow here also an ordinary differential equation (9.64) 
was obtained from the two partial differential equations (9.56) by means of 
the similarity transformation equation (9.61). 
boundary-layer problems, the differential equation is non-linear and of 
the third order. 

Here also, as in most 

The integration of this differential equation (9.64) is attained in 
First, one obtains by a aingle integration a surprisingly simple manner. 

I 

ff' + f" = Constant = o (9.65) 

- 
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The constant of integration therein i s  zero becauss of the boundary 
condition f"(o)  = 0. 
could be integrated once more if a factor 
term. 
s imilar i ty  transf ormati on : 

The secmd order d i f f e ren t i a l  equation now obtained 
2 were present i n  the first 

This factor  can be obtained by performlng the  following fur ther  

One puts: S = a q  (9.66) 

f = 2a F(E) (9.67) 

a is  a f r ee  constant which i s  determined l a t e r .  
and (9.67) one obtains from equation (9.65), the  prime now signifying 
d i f fe ren t ia t ion  with respect t o  (, 

With the equations (9.66) 

F" + 2FFt = 0 (9.68) 

with the boundary conditione: 

This d i f f e ren t i a l  equation can now be integrated again and yields  

F' + F 2 = K  

The constant of integration K i s  obtained from the boundary conditions, 
equation (9.68a), as K = 1, if  one s t ipulates  F1(o) = 1, which i s  
possible without l i m i t i n &  the generality because a is  s t i l l  present as 
a f r ee  constant in  F. One now has for F the first order non-linear 
d i f f e ren t i a l  equation 

F' + F 2 = 1  (9.69) 

which i s  a Riccat i  d i f f e ren t i a l  equation. The integrat ion yields  

1 + F  = -  I iog - = arc  tanh F dF 

1 - F  2 2  1 - F  

and therewith for the inverse function 
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(9.70) 

dF Furthermore, - = 1 - tan2 5 .  
dE. 

equation (9.63), one obtains f o r  the velocity d is t r ibu t ion  

If one i n s e r t s  the solution found in to  

The velocity dis t r ibut ion over the width of the j e t  calculated f r o m  t h i s  
equation i s  represented i n  f igure 41. The f r e e  constant a remains t o  
be determined. 
according t o  which the momentum flow i n  the x-direction i s  independent 
of x. From equation (9.71) and (9.57) one obtains 

This can be done f r o m  th s  condition (equation (9.57)) 

Let the momentum J for  the J e t  be a prescribed constant which is, fo r  
instance, d i rec t ly  re la te& t o  the exces8 pressure under which the j e t  
flows from the s lo t .  Then a becomes, according t o  equation (9.72), 

and therewith th s  velocity dis t r ibut ion 

(9.73) 

(9.74) 
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The value of the transverse component of the velocity a t  the edge of the 
j e t  (y = Q)) a lso  i s  noteworthy. From equation (9.74) one f inds  f o r  
t h i s  l a t e r a l  inflow velocity 

1/3 
v,,, = - 0.550 (9.75) 

2/3 px 

One can fur ther  calculate the flow volume f o r  a layer  of unit height 

Q = u dy. b e  f inds  

The f l d w  volume increases downstream, since f l u i d  a t  r e s t  i s  carried 
along from the side. 

The solution indicated here naturally has a singular point at  
since an in f in i t e ly  narrow s l o t  with in f in i t e ly  large e x i t  x = 0, 

velocity w a s  assumed. 
has immediately behind the s l o t  opening a velocity dis t r ibut ion that i s  
rectangular across the j e t  cross section but  which at  some distance i s  
transformed in to  the bell-shaped distribution found here with width 

Actually fo r  a narrow s l o t  of f i n i t e  width one 

~ 

- 1/3 and mid-velocity ... x 213 b - x  

Finally it should be mentioned that the corresponding rotationally- 
symmstrical problem where the Jet goes out from a very small c i rcu lar  
hole also can be solved in  closed form. 
(reference 22)). 
and the midvelocity proportional t o  

(compare H. Schlichting 
In  t h i s  case the  width of the j e t  i s  proportional t o  x 

x-'. 

e. The Boundmy Layer f o r  the Potential  Flow U = u,xm. 

Another c lass  of exact solutions of the boundary layer  equations 
w i l l  be discussed b r i e f ly  which includes the  p l a t e  i n  longitudinal flow 
and the stagnation point flow a s  special cases. Falkner and Skan 
(reference 37) have shown that ,  Just  as f o r  Blasius' p l a t e  flow, the 
boundary layer  d i f f e ren t i a l  equations for the potent ia l  flow 

u(x) = u x" 1 (9.77) 
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can be reduced by a s imi la r i ty  transformation t o  an ordinary d i f f e ren t i a l  
equation (ul = constant, m > 0 accelerated, m < 0 retarded flow). For 
m >  0, x = 0 is the stagnation point of the flow. For m = 0 one 
obtains U = u1 = Uo, therefore the p l a t e  flow; m = 1 givee U = ulx, 
therefore the stagnation point flow according t o  equation (6.17). 

The d i f f e ren t i a l  equations of the boundary layer  read 

aU dU a2U 

as dx as2 
+ v - = u - + v -  bu 

ax u -  

The pressure term becomes 

2m-1 
U U = ~ U ~ ~  x 

dx 

As a new independent variable one introduces 

, and the continuity equation ie integrated by introduction of a stream 
function for which one uses the equation: 

2 
(9.79) 

m + l  , 

One h m  
m-1 

and one obtains 
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(9.80) 

After inser t ion in to  the first equation of motion and division by 

m ul%*' one obtains, when 

B 2m 
m +  1 
-= 

the  following d i f f e ren t i a l  equation for c p ( e ) :  

cp'n = - (p(p" + $ (cp' 2 -,1) 

Boundary conditions: 

(9.83) 

The d i f f e ren t i a l  equation (9.83) was solved f o r  different  values by 
Hartree (reference 38). 
corresponding values of f3 and m are given i n  the following table. 

The r e s u l t  is given i n  figure 41a. The 
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m 

-0.0654 

0 

0.111 

0.333 

1 

4 

For accelerated flow ( m >  0,  B > 0 )  

B 

-0.14 

0 

0.2 

0.5 

1 

1.6 

one obtains velocity Drofiles 
without inflection points, for retarded flow 
pr'ofiles with inflection points. 

(m< 0,  B C-Oj velocity 
Separation OCCWB for 

j3 = - 0.199, that i g m  = - 0.091 

-0.091 
Separation takes place for the potential flow U(x) = u x , thus 
for very weak retardation. 
result is obtained f r o m  an approximation calculation. 

Compare chapter XI a, where 1 almost the same 

Special cases: 

1. Stagnation point flow: It is obtained for 

m = l ;  B = 1  

u1 Then 6 = d~ y; $= d y -  x cp( E ) .  These are the same expressions as 
for the stignation point flow, equation (6.268) and (6.27a), a lso  (6.19) 
and (6.2614. 
the equation of the stagnation point flow (equation (6.28) ) . The differential equation (9.83) also is transformed into 

2. Plate in longitudinal flow: This case is obtained for 
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1 Then 5 = - 
var i ab 1 e according 

6 

JI = G- \Ivv,x Cp(6 

PY = 
y = 3- with 7 signifying Blasius' 

vx 6 v x  6 
t o  equation (9.3). &themore, If becomes 

f , ) ;  thus cp = - compared with the  expreseion 

dCp df 
E 

f o r  $ f o r  the p l a t e  flow equation (9.4). Because of - = -, 
dE a?-- 

c p " ( E )  = fi ftl(q), and cp'"(E) = 2f'"(7), t h s  d i f f e ren t i a l  equation (9.83) 
i s  f o r  t h i s  case transformed in to  
w i t h  equation (9.8). 

2f*"(7) + f f" (7)  = 0. This i s  ident ica l  

CHAPTER X. A P F ' R O X m  SOLUI'ION OF THE BOUNDARY LAYER EQUA!TION 

BY MEANS OF THE MOMENTUM THEOREM 

(KARMAN4'O"AUSEN METHOD, PLANE PROBLEM) 

a. The F l a t  P la te  i n  Longitudinal Flow 

The examp'les of exact solutions of the  boundary layer  equation 
discussed i n  the  previous chapter give suf f ic ien t  proof of the rather 
considerable mathematical d i f f i c u l t i e s  i n  solving the d i f f e r e n t i a l  
equation. Yet the examples t rea ted  were selected as simple as pos8ible. 
In some other caaes the mathematical calculations are s t i l l  more d i f f i c u l t  
than i n  those. examples. Par t icu lar ly  the problem of flow about a body 
of a r b i t r a r i l y  prescribed shape cannot, i n  general, be solved by exact 
solution of the  d i f f e ren t i a l  equations of the boundasy layer.  
problem, however, i s  of special  pract ical  importance, for instance f o r  
th3 calculation of the  boundary l ayers  on airplane w i n g s .  

J u s t  t h i s  
, 

There exists therefore a tendency t o  apply a t  l e a s t  approximate 
methods, even i f  t h e i r  accuracy i s  sometimes not qui te  sat isfactory,  
f o r  cases where the exact solution cannot be obtained with a reasonable 
expenditure of calculation time. Such simpler approximate solutions can 
be a t ta ined  i f  one does not attempt t o  sa t i s fy  the d i f f e ren t i a l  boundary 
layer  equation f o r  every pa r t i c l e  of  f luid.  
plausible expression f o r  the  veloci ty  dis t r ibut ion i n  the  boundary layer  
and satisfies merely the  momentum equation which :s  obtained by i n t e  
grat ion from the  equation of motion. 
plane prob&em of flow about an arbi t rary body w a s  worked out by von Karman 
and Pohihausen (references 23 and 24).  
t h i s  chapter a t  f i r s t  on the  simpler cme of the  f la t  p la te  i n  longi- 
tudinal  flow, where no presslwe variations ex is t .  For t h i s  special  caae 
the momentum theorem yie lds  the statement t h a t  the  momentum l o s s  of the  
flow through a control area fixed i n  space according t o  f igure  42 
the friction d r q  W(x) of the p l a t e  from the  leading edge (x = 0 )  t o  

Instead one se l ec t s  a 

A method on t h i s  bas i s  f o r  t he  

We sha l l  t r y  out  t h i s  method in  

equals 
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the  point x. 
discussed i n  d e t a i l  i n  chapter IX; f o r  the drag of the p l a t e  wetted on 
one side according t o  equation (9.40) it had resul ted i n  the formula: 

Application of the momentum theorem f o r  t h i s  case w a s  

,A the other han 

W W  

the f r i c t  

= b  

Jy=o 

on uag can a l so  be expressecL a s  the 
of the surface shearing s t ress ,  namely: 

X 

W(X) = b To (x) dx h-. 

(10.1) 

ntegra 

(10.2) 

In forming the integral  (equation (10.1)) it is t o  be noted that the 
integrand outside of the boundary layer,  where 
a contribution. 
that : 

u = U,, does not make 
By comparison of equation8 (10.1) and (10.2) it follows 

Jy=o 

If one introduces moreover the momentum loss thickness, as defined i n  
equation (9.42), equation (10.3) can a l so  be writ ten i n  the form: 

(10.4) 

This i s  the momentum theorem of the boundary layer  f o r  the special  case 
of the f la t  p la te  i n  longitudinal flow. Physically it s t a t e s  t ha t  the 
surface shearing s t r e s s  equals the momentum loss i n  the f r i c t i o n  layer, 
since i n  the present case the pressure gradient makes no contribution. 
The next chapter w i l l  acquaint us with the extension of equation (10.4) 
t o  include the more general case of a boundary layer  with pressure 
difference . 

Equations (10.4) and (10.3), respectively, w i l l  now be used fo r  
approximate calculation of the f r i c t i o n  layer  on the f l a t  p la te  i n  
longitudinal flow. A comparison of the r e s u l t s  of t h i s  approximate 
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calculation with the exact solution according to chapter IXa will give 
information about the usefulness of the approximation method. For the 
approximate calculation one selects a suitable expression for the 
velocity distribution in the boundary layer in the form: 

u = uo f (g) = uo f(’1) 

with 

‘1 = -; 6 = 6 ( x )  (10.6) 
6 

6 represents the boundary layer thickness, undetermined at first. For 
the flat plate it may, moreover, be assumed again that the velocity 
profiles at various distances from the leading edge of the plate are 
affine to each other. Thie assumption is contained in equation (10.5) 
if f(7) there stands for a function which no longer contains any free 
paramete’rs. Furthermore, f(7) must, for large values 7, assume the 
constant value 1. 

The velocity distribution being given by equation (lo.?), the 
momentum integral in equation (10.3) may be evaluated. It yielde: 

The definite integral in equation (10.7) can be calculated immediately 
if a definite formulation is given for f(7). Thus one put6 

a =  

Hence 

(10.8) 

o r  : 

9 = a 6  ( io .  i o )  
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Furthemre, the displacement thickness of the boundary layer 6* becomes, 
according to equation (9.20):  

P' 
6" = 6 ( 1 - f ) d n = a 6  

1 lo 
On the other hand, the shearing stress 

T~ 
at the surface is: 

(10. loa) 

(10.11) 

if one introduces the further simplification 

$ = f'(0) (10.12) 

By introduction of these expressions into the momentum equation (10.4) 
there results: 

2 d6 
6 dx 

$ - =  vuO uo u - 

or 

(10.14) 

The integration with the initial value 6 = 0 for x = 0 yields, as 
first result of the calculation: 

Hence the shearing stress becomes, according to equation (10.11): 

(10.16) 
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l and furthermore 

and hence, f ina l ly ,  the t o t a l  drag of the p l a t e  wetted on both s ides  
according t o  equation (10.2): 

2W = 2b $% \ippUo 3 2 

. A comparison of the r e s u l t s  f o r  boundary layer  thickness, surface shearing 
s t r e s s ,  and t o t a l  drag, which were thus found, with the corresponding 
formulas f o r  the exact solution according t o  equation (9. .) shows t h a t  
the approximate calculation according t o  the momentum theorem reproduces 
the charac te r i s t ics  of the  formulas w i t h  perfect  correctness i n  a l l  cases, 
t h a t  is, the dependence of the  boundary layer  quant i t ies  on the length 
of run x, the f r ee  stream velocity U,, and the viscosi ty  coef- 
f i c i e n t  V .  The numbers a, 8, unknown a t  f irst ,  can be determined 6nly 
a f t e r  making special  assumptions for the veloci ty  dis t r ibut ion,  t h a t  is, 
exp l i c i t l y  prescribing the  function f ( 7 )  i n  equation (10.5). 

I 
I 

Numerical examples 

The usefulness of the method of  approximation w i l l  be investigated 
The acuuracy of the  r e s d t s  w i l l  depend t o  by a few numerical examples, 

a grea t  extent on a sui table  choice of the expresbion fo r  the  veloci ty  
d is t r ibu t ion  according t o  equation (10.5). 
must equal zero f o r  7 = 0 and have the constant value 1 f o r  la rge  9. 
A s  first example we se l ec t  the very rough assumption tha t  the  veloci ty  
d i s t r ibu t ion  i n  the boundary layer  i 6  represented by a l i nea r  function 
according t o  f igure 43a. T h e :  

1 

A t  any r a t e  the function f ( q )  

O S + l :  f ( 7 )  = q 

q 2 1: f(7) = 1 
(10.18) 

Hence the r e s u l t s  f o r  the nimbrs G, j3 according t o  equation (10.8) 
and (10.12) are:  
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The formulas (lO.lg), (10.16) and (10.17) can now be evaluated immediately. 
One obtains the  resu l t s :  

To = - 1 E = 0.289 p U o e  

(10.20) 

(10.21) 

A velocity d is t r ibu t ion  in  the form of a cubic parabola according t o  
f igure  43b i s  selected as second numerical example i n  the  following manner: 

This s a t i s f i e s  the conditions: 

7 = 0: f = 0 ;  7 = 1 :  f = 1; f '  = 0; 

t h a t  is ,  the boundary layer  p ro f i l e  jo ins  the veloci ty  of the poten t ia l  
flow with a continuous tangent. The calculat ion of the  numerical f ac to r s  
according t o  equations (10.8) and (10.12) gives: 

a = = ;  39 p = -  3 
2 

and hence fo r  the charac te r i s t ic  param2ters of the  boundary layer:  

(10.24) 

6 = 4 . 6 4 v g  (10 .25~~)  

(10.25b) 
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Kind of calculation 

Linear approximation 
(fig. 43a) 

Cubic approximation 
(fig. 43b') 

- _ .  

__- 

Exact solution 
(Blasius ) 

89 

6.E 9g 6" $E cw($-) u 2 1/2 

1 155 

9 

1.732 0.578 3.00 0.289 

1.740 0.645 2.70 0.323 1.29 

1.729 0.664 2.61 0.332 1.328 

._ - 

J 

2W = 1.29 b\lllpU,3' (10.25~) 

The exact value for the drag is, according to equation (9.18), 
2W = 1.328 b VG. The simple assumption of a linear velocity distri- 
bution therefore gives a drag too small by thirteen percent, the cubic 
velocity distribution a drag too small by three percent. 

The calculation of the displacement 'thicknesses of the boundary 
layers according to equation (10.10a) results, for the 1inea.r velocity 

I distribution, in 6* = - 6, and for the cubic velocity distribution 
in 6" = 

2 
3 6. This gives, because of equations (10.15) and (lO.25a): 

- 3 

I 6* = 1.732g (linear velocity distribution) 

6" = 1.740E (cubic velocity distribution) 
(10.26) 1 

The agreement with the exact value 6* = 1.728 \la according to 
equation (9.21) is surprisingly good; this is, however, more or less 
accidental. 

The essential characteristics of the boundary layer according to 
the approximate calculation described above are once more compiled with 
the exact solution in the table below. 

Characteristics of the Boundary Layer on the Flat Plate; 

Compari son of Approximate Calculation and Exact Solution 



90 NACA TM NO. 1217 

A s  one can see f r o m t h i s  table,  the agreement, par t icular ly  of the cubic 
approximation and the exact solution, i s  ra ther  good. On the whole, the 
r e s u l t s  of t h i s  calculation with the a i d  of the momentum theorem may be 
regarded as  very satisfactory,  especially i n  view of the simplicity, as 
compared t o  the exact calculation. 

Seventh Lecture (January 19, 1942) 

b. The Momentum Theorem for the Boundary Layer 
with Pressure Drop (Plane Problem) 

Last t i m e  the boundary layer  on the f la t  p la te  i n  longitudinal flow 
w a 8  caldulated by means of the momentum theorem. 
of the boundary layer with a pressure difference' i n  the flow direct ion 
w i l l  be treated. 
measures the coordinate x a s  arc length along the surface; l e t  y be 
the perpendiculm distance from the surface, U(x) the given potent ia l  
flow (f ig .  44). The fundamental equation may be obtained by a momentum 
consideration as i n  chapter IXc; now, however, the pressure difference 
has t o  be'talren in to  consideration. 
integration of  the equation of motion of the boundary layer with respect 
t o  y from y = 0 (surface) t o  y = h, the layer  y = h lying 
everywhere outside of the f r i c t i o n  layer  ( f ig .  44). 

Today the general case 

One considers the flow along a curved surface, and 

The same r e s u l t  i s  obtained by 

The d i f f e ren t i a l  equations of the boundary layer  f o r  the steady 
case read, according t o  equation (8.3), 

with the boundary conditions: y = 0: u = v = 0; y = w  : u = U. The 
integration from y = 0 t o  h gives: 

J,=0 J O  

(10.28) 

In the first term the different ia t ion with respect t o  
t ion  w i t h  respect t o  y may be interchanged, since the upper l i m i t  h 
i s  independent of x. On the l e f t  side the second term i s  transformed by 
integration by parts:  

x and L e  integra- 
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vh representing the transverse velocity outside of the boundary layer.  

By continuity, - av = - 2 and 
8s 

% = - I  buQ ax 

and hence : 

Inser t ion i n  equation (10.28) gives, because of: 

t 

the re lat ion:  

/ /  
Thia i s  the s M a l l e d  Karman  integral-condition, first given by v.'Karmftn 
(reference 23). 

For the Dresswe term one now introduces the potent ia l  velocity V(x); 
furthermore, equation (10.31) i s  to  be transformed so tha t  the displacement 
thickness 5* and the momentum thickness 9 appear in  it a s  defined by 
equation (6.31) and (6.32), namely: 
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h 

u2q =[ u (u -u) dy 
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( 10 32 1 

According to Bernoulli ' 8 equation: 

which c m  also be written: 

By substitution of equation (10.34) into equation (10.31) there results: 

JO JO 

anclafter differentiation of the second term: 
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1 The displacement thiclmess and the momentum thickness can now be 'introduced 
t d i rec t ly  and one obtains: 

o r  

- = u2 g + (23 + 6*) u I du ,I 
This i s  the  form of the momentum equation f o r  t he  boundary layer  with 
pressure drop t h a t  w i l l  be  used as a basis f o r  fur ther  considerations. 
Since i n  it 'I' 
equation (10.3%) must apply i n  t h e  same way t o  turbulent flow, too. 
s h a l l  come back t o  t h a t  l a t e r .  

i s  qui te  generally the surface shearing stre88, 
We 

For the spec ia l  case of vanishing pressure 

drop 

before f o r  the f lat  p la te  i n  longitudinal flow. 

3 0, equation (10.36) i s  transformed i n t o  equation (10.4) found 
dx 1 

, 

The fur ther  calculation of the boundary layer  on the  basi13 of 
equation (10.36) i e  performed f o r  the  laminar case according t o  the  method 
of Pohlhausen (reference 24) and f o r  the turbulent case according t o  the  
method of Gruschwitz (reference 34) (chapter XVIII). 

c. Calculation of t he  Boundary Layer According t o  the  

Method of Karman4ohlhauserGHolstein 

For fur ther  calculation it i s  of importance t o  f ind  a su i tab le  
expression fo r  the veloci ty  dis t r ibut ion i n  the  boundary layer  
According t o  our understanding of the  exact solutions of t he  d i f f e r e n t i a l  
equations of t he  boundary layer  t h i s  expression must a t  least sa t i s fy  
the  conditions t h a t  f o r  y = 0: u = 0, and f o r  y = - :  u = U. Further- 
more the  der ivat ive au/ay m u s t  vanish for  la rge  y. Moreover, veloci ty  
p ro f i l e s  with and without inf lect ion points must be possible, as they 
occur i n  the  pressure decrease and pressure increase region, respectively.  

Finally,  a p ro f i l e  with 

separation point r e s u l t  from the approximate calculation. 

u(x, y). 

= 0 must  be ppssible i n  mder  t o  have E 
au ', / 

Wy=o 
One chooses f o r  the velocity dietr ibut ion sn expresszor, of the form 

u (x, y )  = Uf(y/Gp), and sets ,  according t o  Pohlhausen, 
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for f(y/fjp) a polynomial of the  fourth order, hence: 

< <  < <  va l id  for 0 - y - EP: 0 - 7 - 1. 6p(x) stands f o r  t he  boundary layer  

thickness, the  dependence of which on x has ye t  t o  be calculated.  The 
boundary layer  thickness of the  approximate calculat ion 6p i s  here 

provided with the inctex P ( = Pohlhausen) i n  order t o  avoid confusion 
with the boundary layer  thickness 6 used before. Whereas f o r  the 
exact solutions the veloci ty  i n  the boundary layer  asymptotically 
approaches the velocity of the  poten t ia l  flow, (u -+U f o r  y + W  ); 
t h s  value u = U i s  t o  be a t ta ined  i n  the  approximation a t  a f i n i t e  
distance from the  surface y = fjP, f o r  reasons of calculation. This 
modification of the ac tua l  r e l a t ion  i s  physically insignif icant .  

For the  determination of the  f r e e  constants a, b, c, d i n  
equation (10.37) the following boundary conditions a re  prescribed, all 
of which follow f r o m  the d i f f e ren t i a l  equation of the  boundary layer  
(equation (8.3)):  

i 3% y = o :  u = o ;  v - -  
b2 

Since the condition of no s l i p  u = 0 f o r  y = 0 i s  automatically 
sa t i s f i ed  by expression (10.37), the  four f r e e  constants a, b, c, d 
are suff ic ient  t o  s a t i s fy  the  remaining four conditions. Th3 last  
of the  f ive  conditions follows immediately from the  exact d i f f e r e n t i a l  
equation of the  boundary layer  if one puts 
boundary conditions in to  consideration. This condition i s  par t icu lar ly  
important since it determines the  curvature of the  v a l x i t y  prof i les  
n e w  the surface and assures tha t  boundary layer  p ro f i l e s  do not acquire 
an inf lect ion point i n  the  region of pressure decrease snd do acquire 
one i n  the  region of pressure increase, as required by the  Cxa$=t solution 
according t o  chapter VIII, 
coeff ic ients  a, b, c,  d t h s  equation system: 

y = 0 and takes  the  

From equation (10.38) follows f o r  the  
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a +  b +  c +  d = l  

a + 2 b +  3c+ 4 d = O  

2b t 6~ + 12d = 0 

From the last equation foUows inrmswately: 

-if one introduces the simplification: 

(10.40) 

(10.41) 

The dimensionless quantity h 
velocity profiles as will become clear presently. 
coefficients one obtains from equation (10.39): 

plays the role of a form parameter of the 
For the remaining 

(10.40b ) h a = 2 + % ;  c = -  2t--; 2 d = l - h  6 

Hence the expression for the velocity distribution, which satisfies all 
boundary conditions according to equation (10.37), reads: 

(10.42) 

= F(7) + h G(7) 
U 

in which 

1 
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Due t o  11 = y/6p(x) the  boundary layer  thickness tjP(x) i s  here the 
only unlmown. I f  t h a t  i s  calculated, the  parameter X f6llows immediately 
from equation (10.41). 
velocity p ro f i l e s  form with the form parameter X(x) a one-parameter 
family. The functions F(7) and G(7) indicated i n  f igure  45 and 
t ab le  4 have a universal character, t h a t  is, they do not  depend on the  
special  body shape. The veloci ty  p ro f i l e s  f o r  various values of X a r e  
p lo t ted  i n  f igure 46. The p ro f i l e  with X = 0 is  obtained f o r  dU/dx = 0, 
t h a t  is, f o r  t he  boundary layer  without pressure gradient ( f la t  p l a t e  i n  
longi t idinal  flow). 
a = 0, has according t o  equation (10.40b) the  parameter 
p ro f i l e  a t  the stagnation point has , , a s  will be shown below, 
For X > 12 there  r e s u l t  values of u/U > 1 i n  the  boundary layer,  which 
physically does not make sense. These values therefore  have t o  be excluded. 
Since behind tha separation point the boundary layer  calculat ion loses  i t s  
va l id i ty  anyway, the  form pasmeter  X is  l imited t o  the  region 

From equation (10.42) one understands t h a t  t4e 

The separation p ro f i l e  with (au/a& = 0, t h a t  is, 

X = 7.052. 
X = -12. The 

- 12 5 X 5 + 1 2  (10.44) 

The unknown boundary layer  thickness EP(x) remains t o  be 

calculated. 
a t  o w  disposal. Before performing t h i s  computation, a f e w  preparatory 
calculations a r e  required, namely the determination of t he  boundary layer  
character is t ics ,  displacement thickness E*, momentum l o s s  thickness 9, 
and surface shearing s t r e s s  
expression equation (10.42): 
(10.42) : 

For t h i s  t$e momentum equation (10.36), so far not u t i l i zed ,  i s  

T~ on the  bas i s  of t he  approximation- 
One obtains from equations (10.32) and 

The calculation of  the  def in i te  integrals ,  with the  values of 
G(q) 

F(7) and 
according t o  .equation (10.43), gives: 
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(10.46) 

Further, there results for the surface shearing stress from T 

according to equations (10.42) and (10.43) 
0 

Now the momentum equation (10.36) is to be used for calculation of 
f+(x). After multiplication by $/VU it acquires the dimensionless form: 

(10.48) 

The boundary layer thiclmess 6p does not even appear in this equation; 
however, this is not particularly astonishing, since 
arbitrary quantity of our approximate calculation and therefore without 
special physical significance The physically important quantities, 
displacement thickness 6* and momentum loss thickness 9, appear 
instead in equation (10.48). 
calculate 
to 
according to Holstein and Bohlen (reference 25)  aside from the first form 

formed analogously with the momentum thiclmess 9: 

€iP is a rather 

Hence it suggests itself to first 
9 from the momentum equation (10.48) and then to pass on 

by means of equation (10.46). For this purpose one introduces 

I parameter h. according to equation (10.41) a second form parameter K, 

2 
I C = P - U '  

V 

Then one sets: 
I 

2 z = p .  
V 

Then 

I C =  z U' 



98 NACA TM No. 1217 

Between the second form parameter K and the first form parameter h 
exis ts ,  according t o  equations (10.40) and (10.41) the universal re la t ion:  

Furthermore, for simplification, one substi tutea:  

315 945 9072 

By introduction of K and Z according t o  equatione (10.49) and (10.30) 
and by substi tuting from equation (10.53) and (10.54) one now obtains 
from the  momentum equation (10.48), because of 9at/v = 5 1 d z  

1 - u 
2 d x  

+ [2 + f l ( K j l  K - f 2 ( K )  = 0 

Finally, one se t s  ae fur ther  simplification 

or  written in  detai l :  
e 

F(#)  = (11 x - x) 2 - h + (6 + A) h 2 + & h3}(10.57) 315 - 945 9072 

and thue obtains the following d i f f e ren t i a l  equation f o r  the momentum 
t h i  clmees 
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This i s  EL non-linear d i f f e ren t i a l  equation of the  first order 
f o r  z = $ / v .  The f a c t  t h a t  the function P(K)  i s  ra ther  complicated 
does not const i tute  any appreciable drawback, since F ( K )  i s  ilIliversal, 
t h a t  is, independent of the shape of the body, and hence may be tab;llated 
once and fo r  a l l .  The functions F(K), fi(K), f2(K) as a l so  K = K ( X )  
according t o  equation (10.52) a r e  given i n  tab le  5 .  

A s  t o  the  solution of equation (10.58) the following remains t o  be 
said:  The calculation has t o  start at the  stagnation point x = 0. There 
U = 0; and the i n i t i a l  slope a would be i n f i n i t e  i f  F ( K )  were not  

a l so  equal t o  zero a t  the stagnation point. 
has a zero which y ie lds  a physically eignificant i n i t i a l  value. 
zero of F(K) 
disappears. One f inds : 

dx 
The function F ( K )  ac tua l ly  

This 
i s  given when the second bracket i n  equation (10.57) 

The value 
parameter a t  the stagnation point. 
curve a t  the stagnation point now has the indeterminate value 

l a t t e r  may, however, be calculated and hence f i n a l l y  y ie lds  the i n i t i a l  
value and the i n i t i a l  slope of the integral  curve as: 

X = 7.052 therefore gives the value of the f i r s t  form 

$. 
Then the i n i t i a l  slope of the in tegra l  

The 

U; 

Uf 
(g)o = -0.0652 - 

(10.60) 

The index o denotes the values a t  the stagnation point. With these 
i n i t i a l  values one succeeds eas i ly  i n  performing the integrat ion of 
equation (10.58), f o r  instance, according t o  the isocl ine method. A 
calculat ion example i s  given i n  the appendix, f igure  47, and tab le  6. 
The calculat ion is  t o  be car r ied  up t o  the separation point X = -12: 
K = -  0.1567. 
poten t ia l  flow a re  the velocity U ( x )  
respect t o  the arc  length 
daJ,/dx2 also required for  the i n i t i a l  slope of the int.egrstion c i v v ~ ) , )  

Quant i t ies  entering the calculat ion tha t  a r e  given by the 
and i t s  first derivative with 

(Only a t  the stagnation point is dU/dx.* 

* In  Pohlhaugents treatment (reference 24) a d i f f e ren t i a l  equation is  
formed obtained instead of equation (10.58), for the  quantity 

analogously t o  Z. Pohlhausente d i f f e ren t i a l  equation a l so  contains 
d2U/dx2 
by a double graphical different ia t ion.  
which completely avoids the quantity d2U/dx2 therefore mans an 
es sen t i a l  improvement of tho method. 

z = t5p2/v, 

which often can be obtaingd from the given poten t ia l  flow only 
The representation of Holstein 
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Velocity maximum 

Separation point 

The values of the form parameters for the three special ca8es: 
stqgnation point, velocity maximum (ut = 0 )  (pressure gradient equals 
zero), and separation point m e  compiled in the table below. 

0 0 

-12 -0.1567 

Stapation point 0.0770 

The entire process of calculation takes the following course: 

1. The integration of equation (10.58) yields Z(x), K(X) and 
according to equation (10.501, a lso 4(x); furthermore it yields the 
position. af the separation point. 

2. First form parameter X(x) from equation (10.52) 

3. Displacement thickness 6* from equation (10.53) 

4. Surface shearing stress T~ from equation (10.54) 

5. Boundary layer thickness BP(x) from equation (10.45) 

6. Velocity distribution u/u from equation (10.42) 

Flat Plate in Longitudinal flow 

The special case of the flat plate in longitudinal flow which was 
treatedin chapter Xa with a different form for the approximation can 
also be obtained very simply from the present calculation. 
Ut 5 0, and hence K = X = 0,' and according to equation (10.58): 

U = U ; 

dz F(0) - 0.4698 - =  - 
uo uO 

With t he  initial value 9 = 0 for x = 0 there results 

9 2 = 0.4698 or  9 = 0 . 6 8 5 E -  
uO 

(10.61) 
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V ~ ~ Y P R E !  ~ c c o r c ? ! ~ ~  to t h e  exact calc-J.at?cn, equatim (6.331, it is 
6* \Ivtlv = 0.648. 
shearing stress is: 

Finally, according to the approximate calculation the I 

whereas the exact value according to Blasius' calculation, equation (9.21b), 
is 9 = 0.664Vx. Furthermore, it fol lows that the displacement 
thickness is with 6*/,j = fl(0) = 2.54 

6* = 1.7313 (10.62) 

The shearing stress becomes, from equation (10.54) with f2(0) = 0.235; 

T o  = 0.343 wuo vy iUo 
while the exact value 
equation (9.17). The agreement with the exact values is rather satisfactory. 
In figure ?Ob the velocity distribution obtained by the approximate calcula- 
tion also is compared with the exact calculation in the plot 
y/6*. 

T~ is T~ = 0.332 ~ U o ~ U o ~ x  according to 

u/U against 
This agreement a lso  is rather good. 

Stagnation Point Profile 

A similar comparisnn can be performed for the stagnation point 
profile the exact solution of which was given in chapter VI. 
case X = X, = 7.052, K = K~ = 0.0770. For the approximate calculaticn 
the momentum thickness is: 

For this 

d E =  E= 0.278 (10.64) 

whereas according to the exact calculation equation (6.34) it is 
9 \TU7=0.292. 
calculation; 

The displacement thickness is, for the approximate 

6 * E =  f l ( K O )  6 = 0.641 



~ 
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(10.66) 

compared with 70 = cp"(0) = 1.234 by the  exact calculation. Thus 

the agreement with the  exact values i s  here a l so  sat isfactory.  
PU 

The velocity d is t r ibu t ion  of t he  approximate calculation i s  compared 
with the exact calculation i n  f igure  5- i n  the p lo t  u/v against y/6*. 
Here also the agreement i s  good. 

The following tab le  contains a compilation of the  comparisons j u s t  
given, between the  charac te r i s t ics  
approximate calculation. 

6*, 9, T~ from exact and from 

- - ~  - - _. __ 
1 

Blasius P ro f i l e  Stagnation point p ro f i l e  

BX 
9 9 

- 

1.75 0.685 0.343 2.5$ 0.641 0.278 1.19 2.31 

Exact solution 1.73 0.664 0.332 2.61; 0.648 0.292 1.234 2.21 

Pohlhausen 

__ 
Approxi mat i on I 

O f  course, it can not ye t  be concluded from t h i s  good agreement of 
the approximate with thg exact solution t h a t  similar good agreemnt would 
ex i s t  for a l l  the boundary layer  p ro f i l e s  along the  body. Accurate 
comparisons a re  not eas i ly  performed since very few exact solutions 
reaching from the stagnation point t o  the  separation point exis t .  However, 
one may conclude from occasionally made comparisons t h a t  i n  the  region of 
pressure decrease the agreement i s  nost ly  ra ther  good; i n  the  region of 
pressure increase, par t icu lar ly  near the separation point, some deviation 
might OCCUT. 

Since no other serviceable methods for boundary layer  calculation 
have so far become k n o q t h e  Pohlhausen method i s  fo r  the  present t o  be 
regarded as the  best .  
for one side of the body immersed i n  a given poten t ia l  flow amounts t o  
about three hours i 

The time required f o r  a boundary layer  calculation 

The calculation described here f o r  the plane flow w a s  applied by 
Tomotika (reference 26) t o  the  rotationally-symmetrical case. 

. 



A few examples of boundary layer calculations will be givsn, a l l  
of which were performed according to *he approximation method described 
in the previous section. 
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a survey of the variation of the boundary layer along the surface and of% 
the velocity dis t r ibut ion i n  the boundary layer  f o r  ca = 0, figure 57 
f o r  Ca = 1. 

Finally, the th i rd  example gives a survey-of the influence of the 
most important prof i le  parameters of a wing prof i le  on the laminar 
boundary layer.  
calculation f o r  a family of Joukowsky prof i les  of r e l a t ive  thickness 
d/t  = 0 t o  0.25 and r e l a t ive  camber f / t  = 0 t o  0.08 f o r  ca- values 
from 0 to  1. O f  the  
very voluminous resu l t s ,  only the posit ion of the separation point sha l l  
be shown here. Figure 59 shows the posit ion of the separation point on 
the suction side as a function of thickness, camber, and l i f t  coefficient;  
f igure 60 shows the same re su l t  f o r  the pressure side. 

R. Bussmar~n (reference 36) performed the boundary layer 

Figure 58 shows the family of Joukowsky prof i les .  

Herewith the discussion of the approximation method for calculation 
of the laminar boundary layer  w i l l  be concluded. 

Eighth Lecture (January 26, 1942) 

CHAITER X I .  -ION O F  SEPARATION 

For pract ical  flow problems the flow with pressure increase 
(retarded flow) plays an important role .  
no se-oaration of the flow from the w a l l  occur, because of the resul t ing 
large lossss i n  energy. The wing presents a good example. A pressure 
increase ex i s t s  on the suction side toward the t r a i l i n g  edge ( f ig .  61). 
If separation occurs, the wing will have an undesirably large drag and 
small lift. Another example i s  the flow i n  an expanding passwe 
(diffuser) which transforms kinet ic  energy in to  pressure energy (as f o r  
instance i n  the wind tunnel or i n  the bucket gr id  of a turbine).  

It i s  always desirable tha t  

Calculations w i l l  presently show tha t  the a b i l i t y  of a l W n a r  flow 
t o  overcome a pressure increase without separation i s  exceedingly smll. 
Thus the pressure jmcreases present i n  prac t ica l  flows would, f o r  laminar 
flow, almost always lead t o  separation. The reaeon that, nevertheless, 
i n  many cases of p rac t ica l  flows considerable pressure increases a re  
surmounted without separation i s  tha t  the flow i s  turbulent. As we sha l l  
see more clear ly  l a t e r ,  the  a b i l i t y  t o  overcome a pressure increase with- 
out separation is  very much greater f o r  turbulent than f o r  laminar flow. 
Since, moreover, the pressure increase always gives r i s e  t o  an early 
t ransi t ion from laminar t o  turbulent", one ha8 t o  deal almost exclusively 
with turbulent flow i n  pract ical  flows with pressure increase. 

Nevertheless it i s  useful t o  c l a r i fy  the fundamental re la t ions  
regarding prevention of separation f o r  laminar flow, par t icular ly  because 
i t s  2henomena lend themselves more readi ly  t o  numerical treatment than 
those o f  the turbulent Flow. 

~ ~~~~~ ~~~~~ 

"Details a re  given i n  chapter XXI "Transition from Laminar t o  Turbulent!' 
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Various possibilities exist for prevention of separation. The 
simplest way is to make the pressure increase so amall that sepwation 
is avoided. 
information about this possibility. Another possibility consists in 
artificially influencing the boundary layer, for instance by blowing 
or suction of fluid, or  else by application of am auxiliary wing that 
provides acceleration at the critical points of the boundary layer. 
Some details w i l l  be given in the following sections of this chapter. 

A numerical estimation in the next section will give 

a. Estimation of the Admissible Pressure Gradient 

We are going to make, following Prandtl (reference 2), a generally 
valid estimation of the pressure increases in a laminar boundary layer 
that are possible without the occurrence of separation. We take as the 
basis the K&&-Pohlhausen approximate calculation according to 
Chapter X and make the assumption that under the effect of the pressure 
gradient given by the potential flow the boundary layer has developed 
till near the separation point (Point 0 in fig. 62). From here on 
the pressure distribution is to be such that the form of the velocity 
profile does not change further downstream, that is, the form parameter 
X is to remain constant. 
point is X = -12, this constant L-value shall be chosen at X = -10". 
A definite value of the second form parameter (according to table 5) 
corresponds to this choice: 

Since the value corresponding to the separation 

0 

X = -10; K 4.1369; F ( K )  = 1.523 (11.1) 

For the prevention of separation the following relation between the 

according to equations (10.50) and (10.51): 
1 potential-flow velocity U(x) and the momentum thickness 9(x) results 

or 

or 

dz UUn u - = 0.136g - = 0.1369 0 2 U' dx 

if one puts for simplification 

(11.2) 

(11,4) 

~ ~ _ _  
0 

*At any rate, this X-value must be negative, since otherwise the flow 
in question is not retarded. 
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On the other hand, the mmentum equation according to 
equation (10.58) holds for the further development of the boundary layer 
for x >  0: 

U = F(K) = F(-0,1369) = 1.523 
dx 

(11.6) 

The numerical value must be substituted for 
are to remain constant at the values given by equation (11.1). 
equations (11.6) and (11.4) follows therewith, for the constancy of the 
form parameter X = -10, the conditional. equation 

F ( K ) ,  if the form parameters 
From 

0.1369 E = 1.523 
U' * 

or 

For 
for a < 11 separation occurs; for a = 11 the boundary layer always 
remins with X = -10, on the verge of separation. Qualitatively, the 
following can be immediately said about the distribution of the potential- 
flow velocity U(x) which gives no separation. Because of equation (11.7) 
a necessary condition for avoiding separation in retarded flow is: 

a > 11 the boundary layer can still bear the pressure increase; 

that is, a negative velocity gradient Ut must exist, the magnitude of 
which decreases in the flow direction. If, therefore; the curve U(x) 
in figure 63 is curved downward behind the maximum (U" < 0), separation 
occurs in every case; if it is curved upward (u" > O ) ,  separation some- 
times does not OCCW. The limiting case U" = 0 for U' < 0 always 
leads to separation. The sufficient condition for  avoiding separation 
is w"/rr'* >11. 
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One now proceeds t o  calculate what potent ia l  flow and what boundary 
layer  thiclrness variation correspond to  (I = +u. 
f 0l.lows : 

From equation (11.7) 

.and after integration: l o g  U' = 11 l og  U - log Ci or 

Ut 
c: - = -  

.._I 

with C; a6 integration constant. 

1 -10 - u  = 
10 

For x = 0, U(x) sha l l  be U(x) = 

Furthermore, one puts 

Repeated integration gives: 

C' x + cg 
1 

Uo, thus 

10 c i  uo = c1 

and obtains from equation (11.8) for the potent ia l  f l o w  

U- 

(11.8) 

(11.10) 

(11.11) 
0.1 

(1 + 10 C1x) 

Thereby i s  found the desired velocity dis t r ibut ion tha t  j u s t  avoids 
separation. The constant C1 can be determined from the boundary layer 
thickness 6, at the i n i t i a l  point x = 0: 
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According t o  equation (11.11) I *  
U' = - uo 

1.1 
(1 + 10 clx) 

and thence I 
6 =iE- (1 + 10 clx) 0.55 

From 6 = 6, for x = 0 follows I 
(11.12) 

and thus, as the final solution f o r  the potent ia l  flow and the  boundary 
layer thickness variation, 

-0.1 * 
u = uo 1 + 100 - ( u;>> 

0.55 
6 = 6, 1 + 100 t'lc ( uopo2) 

(11.14) 

The permissible retardation (velocity decrease) i s  therefore comparable 

t o  
the c.onstant velocity of the f lat  p la te  i n  longitudinal flow. 
present case the growth of the boundary layer thiclmess 

be somewhat larger  than for the f l a t  plate,  where 6 x . Here 

6 thus the increase i s  only s l igh t ly  larger .  

10 
and i s  thus very small. The velocity i s  thus very close t o  

For the 
8 must therefore 

112 

The flow i n  a divergent channel with plane w a l l s  ( twMimns iona l  
problem) will be t reated as another example. In f igure 64 l e t  x be 
the radial  distance' from the or igin 0. The w a l l s  start a t  x = a, where 
the entrance velocity of the potent ia l  flow equals 
flow i s  

Uo. The potent ia l  

*Compare Chapter 7x e whsre it w a s  found, as exact solution of the 
different ia l  equation of the boundary layer, t ha t  i n  retarded flow 

separation occurs when U(x) = 
-0.091 

u1 



NACA TM NO. 1217 109 

a u(x) = uo 2 

a 
uo 2 U' = - 

X 

a V' = 2uo - 
X 3 

Thus Ut < 0 asd v"> 0 fo r  a l l  x so t h a t  the necessary condition 
equation (11.7a) for  avoidirq separation i s  sa t i s f ied .  
t ion  of the dimensionless number u 

However, calcula- 
according t o  equation (11.5) gives 

a = 2  (11.16) 

The suf f ic ien t  condition fo r  avoiding separation, a >  11 according t o  
equation (11.7) i s  therefore violated. 
plane w a l l s  separation therefore occurs f o r  any included angle. 
example shows especially c lear ly  the l o w  a b i l i t y  of the laminar flow t o  
overcome a pressure increaee without separation. 
t ion  of Pohlhausen (reference 24) the separation point l i e s  at  
and thJs is  independent of the included angle a. 

For the divergent channel with 
This 

According t o  a calcula- 
(x/a) = 1.212 A 

b. Various Technical Arrangements for Avoiding Separation 

It i s  a favorable circumstance f o r  technical applications tha t  f o r  
higher Reynolds numbers the boundary layer does not remain laminar but  
becomes turbulent. The turbulence consists of an i r regular  mixing motion. 
By t h i s  mlxing motion momentum is  continuously transported in to  the layers  
near the w a l l ,  and the pa r t i c l e s  retarded a t  the w a l l  a r e  carr ied out i n to  
the f r ee  stream and thus redccelerated.  

Because of t h i s  mechanism the turbulent flow i s  able t o  withstmd, 
without separation, considerably higher pressure increases than the 
laminar flow; thus the pressure increases existing i n  technical flows 
a re  made possible. 

A f e w  technicai pose ib i i i t i es  fo r  avoiding separation w i i l  be 
d i  sCU6S8d. 

1. Blowing. For a wing prof i le  the separation of the boundary 

The 
layer f o r  large angles of a t tack (fig. 6 5 )  can be prevented by blowing 
air i n  the flow direction from a s lo t  directed toward the rear. 
velocity for the layer near the surface i s  thus increased by the energy 
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supplied and the  danger of separation is therefore  eliminated. It is 
t rue  t h a t  i n  the prac t ica l  execution not much i s  gained, because of the  
large Je t  energy required f o r  any considerable improvement of t he  flow. 
I n  order t o  make the  energy output small, t he  width of the  j e t  mtlst be 
kept Ermall. But then the  je t ,  soon after i t s  exit ,  breaks up i n t o  
vortices.  

2. Another poss ib i l i ty  of avoiding separation is  the  arrangement 
of a s lot ted wing according t o  figure 66. 
boundary layer  formed on the s l o t  AB being carr ied away in to  the  free 
stream, before it separates, by the  flow through the  s lo t .  
boundary layer  develops at C which is, however, a t  first very t h i n  
and reaches D without separation. 

The e f fec t  depends on the  

A new 

The same principle i s  used f o r  t h e  Townend r ing  and NACA cowling 
( f ig .  67). 

3. Suction. A fur ther  poss ib i l i ty  f o r  t h s  prevention of separation 
i s  suction. For the  wing, f o r  instance, the  retarded bounikry-layer 
material is. sucked off in to  the  in t e r io r  of t he  w i n g  through one o r  
several s l o t s  ( f ig .  68). 
or behind the  separation point so t h a t  no reversal  of the  flow can occur. 
A new boundary layer  which a t  first i s  very t h i n  develops behind the  
suction point and permits t he  pressure t o  increase fur ther .  Ln t h i s  
manner one can overcome considerably la rger  pressure increases and 
a t t a i n  higher values of maximum l i f t  for  the  wing. 
arrimgemsnts fo r  increasing maximum l i f t  have been investigated by 
0. Schrenk (reference 28). Values fo r  ca max of 3 t o  4 were obtained. 

The point of suction l i e s  s l igh t ly  ahead of 

Many d i f fe ran t  suction 

c.  Theory of the  Boundary Layer with Suction 

Suction i s  a very effect ive means f o r  influencing th3  f r i c t i o n  
layer  on a body imersad  in a flow and par t icu lar ly  f o r  avoiding 
separation. 
i n  h i s  Fundamental work on the  boundary layer.  

This w a s  pointed out f o r  the  first t i m e  in  1904 by I,. Prandtl  

Anoths poss ib i l i ty  of application of suction, recognized only 
recently, i s  t o  keep t h s  f r i c t i o n  layer laminar. 
is, by suction, kept so th in  t h a t  t rans i t ion  t o  the  turbulent s t a t e  of 
flow i e  avoided. The surface f r i c t i o n  drag is  thereby reduced. Experimental 
investigations of t h i s  e f fec t  were carr ied out by Ackeret (reference 39). 

Here the  boundary layer  

The laminar f r i c t i o n  layer  with suction can a lso  be subjected t o  a 
numarical treatmsnt which w i l l  be b r i e f ly  discussed. 
assumptions a re  made. fo r  t h s  calculation: 

The following 
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1. The suction is introduced into the calculation through the 
assumption that the normal velocity at the wall vo(x) is 
different from zero. 
permeable. 
vo(x) 

The wall is therefore assumed to be 
A continuous distrfbution of the suction velocity 

serves the purpose of numerical treatment best. 

2. The suction quantities a r e  so small that only the parts in the 
immediate neighborhood of the wall a r e  sucked from the 
boundary layer. This leads to a very Small ratio of suction 
velocity vo(x) to f ree  stream velocity u0: vo/u0 = 0.001 
to 0.01. 

3. The n-lip condition at the wall u = 0 is retained with 
suction, likewise the expression for the wall shearing stress 

The equations of motion for the boundary layer with suction therefore 
read 

2 a U  u - + - ? - = u ~ + v  au au 
'as2 - 1  ax aY dx 

with the boundary conditions 

y = 0 u = 0 v = vo(x) 

y = m  u = u  

vo < 0 signifies suction; vo > .O blowing. 

(11.18) 

As in chapter X b the momentum theorem is again applied to the 
boundary layer with suction. 
with suction is obtained in exactly the sane manner as in chapter X b 
(compare fig. 44) provided one takes into consideration, in addition, 
that the n o m 1  velocity at the wall is different from zero. 
X b the momentum equation was derived by integration of the equation of 

The momentum equation for the boundary layer 

In chapter 
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motion for the xdirection over y between the limits y = 0 and 

tion performed for the boundary layer with suction: 
for the normal velocity at the distance from the wall 
different, compared with the calculation in chapter X b. 
velocity now becomes 

y = a ,  ' (compare equation (10.28)). One imagines exactly the sane calcula- 
then the expression 

is 
The normal 

y = h 

The remaining calculation is exactly the same as in chapter X b and 
finally yields as the momentum equation for the boundary layer with 
suc ti on. 

1 I 

TD=$d9+  (24 + 6+) u - - v o u  dU l p  dx dx 
(11.20) 

The newly added term -v U (compared with equation (10.36)) gives the 
loss of momentum due to ?he suction at the wall. 

We shall now treat the special case of the flat plate with suction 
in longitudinal flow (fig. 69)  (reference 29). The free-atream velocity 
is Uo. Equation (11.20) then becomes 

(11.21) 

if one takes the law for the laminar wall shearing stress into coneider- 
ation. Furthermore, the assumption is made that the suction velocity 
(or blowing velocity) -vo along the plate is constant. In this cam 
one can obtain from the momentum equation (11.21), by the following 
,simple calculation, an estimate of the variation of the momentum thick- 
ness along the plate. One puts 

(%>, = B uO 9 (11.22) 

f3 2 0 
It may be assumed, to a first approximation, that 

signifying a dimensionless form parameter of the velocity profile. 
j3 varies only little 
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with the length of run x; accordingly, l3 will be considered conqtant. 
Theniequation (11.21) may be written 

with the initial condition 9 = 0 for x = 0. For suction (vo < 0) one 
obtains dd/ctx = o for 

V 9- = B - (suction) 
-vO 

(11.24) 

(that is, therefore, the momentum thickness reaches, after a certain 
approach leqth, a constant asymptotic value given by equation (11.24)). 
Simultaneously, displacement thickness, velocity distribution, and a l l  
other boundary layer coefficients also become asymptotically independent 
of x. 

For blowing (vo > 0) the value db/dx i s ,  according to equation 
(11.23),larger than zero along the entire plate; that is, 
with the length of run x without limit so that for large values of x, 
one can neglect in equation (11.23) the first term on the right side 8s 
compared with the second. (Ine obtains therefore, as asymptotic law, 

9(x) increases 

9, = x (blowing) 
% 

On the whole, one obtains the remarkable result that for the flat plate 
in longitudinal flow with constant auction or blowing velocity, the 
boundary layer thiclmese for suction becomes constant after a certain 
approach length, whereas for blowing, it increases proportionally to the 
length of run x. In between lies the case of the impermeable wall 
where the boundary layer thickness increases with F. 

For the case of the' l&n& boundary layer with the asymptotically 
constant boundary layer thichees it is also possible to give immediately 
an exact solution of the differential equations of the boundary layer in 
a surprisingly simple form. In this case &/ax E 0, hence also, 
according to equation (ll.l7), &/by I 0 and therefore 

V(X,Y)  = vo = constant (11.26) 
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Hence there follows from equation (11.17) 
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and from it the solution which satisfies the boundary conditions 
equation (11.18) 

(11.28) 

F r o m  this equation results the displacement thickness of the asymptotic 
boundary layer 

V 

- v  
6*m = - 

0 

the momentum thickness 

6* 
- = 2. 

0 and the form parameter 

equation (11.24) one finds the factor 
of the asymptotic boundary layer profile according to equation (11.28) 
is plotted in figure 70 together with the Blasius solution for the 
impermeable wall. 

By comparing equation (11.29) with 
9, 

l3 = 1. The velocity distribution 

Herewith the considerations of boundary layer with suction will 
be concluded. 

CHAPTER X I I .  APPEN-DIX TO PART I 

a. Examples of the Boundary Layer Calculation 

According to the Pohlhausen-Holstein Method 

For the integration of the differential equation (10.58) it is 
best t o  ase the isocline method. It is expedient t o  calculate with 
Aimensionless quantities. The arc length 6 is made dimensionless by 
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dividing by a characteristic length of the body immersed in the flow, 
for 'instance, for the wing, by the wing chord t. The variable Z = *82/V 

is made dimensionless by multiplying bg' 3. Thus one puts: 
t 

Hence the differential equation reads: 

(12.1) 

(12.2) 

The calculated example concerns a symmetrical wing profile (J 015) in 
symmetrical approach flow (ca = 0). The prescribed potential-flow 
velocity and its first derivative with respect t o  the arc length is 
given in tpble 6. 
according to equation (10.60), to be, for the present case: 

The initial values f o r  the integration are calculated, 

Z,* = 0.00 149 

since at the stagnation point d2U/ds2 = 0. The auxiliary function F(K) 
required for the integration is given in figure 47-8 and table 5. 
calculation according to the isocline method is shown in figure 48. Here 
the curve 
according to the relation: 

The 

which gives the separation point can be calculated IC = -0.1567 

The intersection of'the integral curve with this curve gives the separa- 
tion point. 
tion of the nomentum thicheee. 

and 

As a result of the integration one obtains at first the varia- 
By means of the ~ c t i o n  6*/9 = f(K) 

5 = f ( K )  given in table 5 one can also calculate the displacemant 
U P  
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thiclmess and the  shearing s t ress .  
compYled i n  table  6 and given i n  figure 49. 
dis t r ibut ion i n  tll;e boundary layer  can be seen from f igure 56. 

The r e s u l t  of the calculation is  
Moreover, the velocity 

Translated by Mary L. Mahler 
National Advisory Committee 
for  Aeronautice 

\ 
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TABU I. - TEE FUNCTION Cp OF THE PLARE STAGNATIOX POINT 

FLOW (ACCORDING TO HIEMENZ (RB3DE3NC.X 10));  TO FIGURE 16 

! 
-- 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3 -9 
4.0 
4.1 
4.2 
4.3 

-- 
'p 

0 
0.0060 
0.0233 
0.0510 
0.0881 
0.1336 
0.1867 
0,2466 
0.3124 

0.4592 
0 3835 

0 5389 
0.6220 
0.7081 
0.7966 
0.8873 

1.0738 
1.1688 
1.2650 
1.3619 
1.4596 
1 5577 
1.6563 
1 7552 
1.8543 
1 9537 
2.9533 
2.1529 
2.2528 
2.3525 
2.4523 
2.5522 
2.6521 
2,7521 
2.8520 
2.9520 
3 0519 
3.1518 
3.2518 
3 3518 

3 - 5518 
3.6518 

0 9798 

3.4518 

'p' 

0 
0.1183 
0.2266 

0.4946 
0.5662 
0.6298 
0.6859 

0.3252 
0.4144 

0 7350 
0 7778 
0.8149 
0.8467 
0 8739 
0.8968 
0.9161 
0.9324 
0 9457 
0 9569 
0 9659 
0.9732 
0.9792 
0.9841 
0.9876 
0 9905 
0.9928 
0.9946 
0.9960 
0.9971 
0 9979 
0 9985 
0 9988 
0 9992 
0.9994 
0 9996 
0 9997 
0 9998 
0 9999 
0 9999 
0 9939 
1.oOoo 
1,0000 
1.0000 
1.0000 

- 
'p" 

1.23264 
1.1328 

0.9386 
0.8463 
o 7583 
0.6751 
0 5973 
0.5251 
0.4586 
0.3980 
0.3431 
0.2937 
0.2498 
0 2109 
0.1769 
0.1473 
0.1218 

0.0658 
0.0528 
0.0420 
0.0332 
0.0260 
0.0202 
0.0156 
0.0119 
0.0091 
0.0068 
0.0051 
0.0036 
0.0027 
0.0023 
0.0019 
0.0014 
0.0010 
0.0008 
0.0004 
0.0003 
0.0002 
0.0001 
0.0001 
0 

1.0345 

0 0999 
0.0814 
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TABIZ II. - "E FUNCI'ION f OF THE BOUNDARY LAYER ON TBE FUU! I?LA!TE 

IN LONGITUDINAL FLOW (ACCORDING TO BLASlTTS (REFERENCE 8) ) ; TO 

FIGURE 30 7 = YE; = f'(7) rr, 

7 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.0 
3.0 
3.2 
3 94 
3 *6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 
8.2 
8.4 
8.6 
8.8 

f 

0 
0.00664 
0.02656 
0.05974 
0.10611 
0 16557 
0.23795 
0.32298 
0.42032 
0 52952 
0.65003 
0.78120 
0.92230 
1.07252 
1 23099 
1.39682 
1.56911 
1.74696 
1.92954 
2.11605 

2.49806 
2.69238 
2.88826 
3.08534 
3 28329 
3. $8189 
3.68094 

4.27964 

4.67938 
4.87931 
5 07928 
5.27926 
5 47925 
5.67924 
5.87924 
6,07923 
6.27923 
6.47923 
6.67923 
6.87923 

2.30576 

3.88031 
4 * 07990 

4.47948 

7,07923 

f' 

0 
0.06641 
0 - 13277 
0.19891C 
0.26471 
0.32979 
0,39378 
0.45627 
0.51676 
0 57477 
0.62977 
0.68132 
0 72899 
0.77246 
0.81152 
0.84605 
0.87609 
0 90177 
0.92333 
0.94112 
0 - 95552 
0.96696 
0.97587 
0.98269 
0.98779 
0 99155 
0.99425 
0.99616 
0.99748 
0 * 99838 
0 99898 
0.99937 
0 99961 
0 99977 
0 * 99987 
0.99992 
0 - 99996 
0 * 99998 
0 99999 
1 e 00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 

f" 

0.33206 
0.33199 
0.33147 
0.33008 
0.32739 

0.31659 
0 30787 

0.28293 
0.26675 
0.24835 
0.22809 
0.20646 
0,18401 
0.16136 
0.13913 
0.11788 
O.og809 
0.08013 

0.32301 

0 29917 

0.06424 
0.05052 
0.03897 
0.02948 
0.02187 
0.01591 
0.01134 

0.00543 

0.00240 
0.00155 

0 00793 

0.00365 

0.00098 
0.00061 
0.00037 
0.00022 
0.00013 
O.OOoO7 
O.OOOO4 
0 i 00002 
0.00001 
0.00001 
0 
0 
0 
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'1 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

2.7 

0.6 

2.6 

2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 

f 
3 

0 
0 * 0035 
0.0132 
0.0282 

0.0962 

0.0476 
0.0705 

0.1240 
0.1534 
0.1838 
0.2149 
0.2462 
0.2776 
0.3088 
0.3397 
0.3702 
0.4002 
0 * 4297 
0.4587 
0.4871 
0.5151 
0.5426 
0.5698 
0.5966 
0.6230 
0.6492 
0.6752 

0.7266 
0.7010 

0.7520 
0.7774 
0.8027 
0.8279 
0.8531 
0.8782 
0.9033 
0.9284 
0 * 9534 

1 - 0035 
1.0535 

1.1035 

0.9785 

1.0285 

1.0785 

1.1285 

-- 

f: 
0 
0.0675 
0.1251 
0.1734 
0.2129 
0.2444 
0.2688 
0.2869 

0.3080 
0.2997 

0.3125 
0.3140 
0.3132 
0.3107 
0.3070 
0.3025 

0.2923 
0.2947 

0.2871 
0.2822 
0 2775 
0.2733 
0.2695 
0.2662 
0.2632 

0.2586 
0.2568 

0.2607 

0.2554 
0.2542 
0.2533 
0.2525 
0.2519 
0.2515 
0.2511 
0.2508 
0.2506 
0.2504 
0.2503 
0.2502 
0.2502 
0.2501 
0.2501 
0.2500 
0.2500 

f" 
3 

0.7244 
0.6249 
0.5286 
0.4375 
0.3539 
0.2780 
0.2ll2 
0.1530 
0.1037 
0.0626 
0.0292 
0.0028 
-0.0173 
-0.0320 
-0.0420 
-0.0482 
4.0513 

4.0506 
-0.0480 
-0.0444 
-0.0402 
-0.0358 
4.0314 
-0.0271 
4.0230 
4.0194 
4.0160 
-0.0131 
-0.0106 
-0.0085 
-0.0067 
4.0052 
-0.0041 
-0.0032 
4.0024 
-0.0019 
-0.0014 
-0.0011 
4.0008 
-0.ooo6 
-0.0004 
-0.0003 
-0.0002 
-0.0001 

4.0518 

-- 

'1 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 

g5 - -~ 
0 
0.0114 
0.0405 
0.0806 
0.1264 
0.1742 
0.2218 
0.2676 
0.3112 
0.3526 
0.3918 
0.4293 
0.4655 
0.5007 
0.5352 
0.5692 
0.6030 
0.6365 
0.6700 
0.7034 
0.7368 
0. no1 
0.8035 

5 h 

0 
0.0017 
0.0045 
0.0057 
0.0039 
-0.0012 
-0.OogO 
-0.0185 
-0.0286 
-0.0384 

-0.0546 

-0.0649 
-0.0681 

-0.0472 

-0.0604 

-0.0703 
4.0717 
-0.0726 
4.0732 
4.0735 
-0 0737 
-0.0738 
-0.0738 

g; __ 
0 
0.1072 
0.1778 
0.2184 
0.2367 
0 * 2399 
0.2342 
0.2239 
0.2123 
0.2012 
0.1916 
0.1839 
0.1781 

0.1694 
0.1682 
0.1676 
0.1672 
0.1669 

0.1667 
0.1667 

h' 5 

0.1740 
0.1712 

0.1668 

0 
0.0141 

-0.0010 
-0.0176 
4.0330 
4.0441 
4.0498 
-0.0503 

4.0406 
-0.0331 
4.0257 

4.0133 

0.0117 

4.0468 

-0.0189 

4.0089 
4.0058 
4.0036 
-0.0021 
-0.0012 
4.ooo6 
-0.0003 
-0.0001 ~- 

g; 
0.6348 
0.4402 
0.2717 
0.1408 
0.0483 
-0.0106 

-0.0567 
-0.0580 
4.0522 
-0.0432 
4.0335 
4.0245 
-0.0171 
4.0ll4 
-0.0072 
4.0043 
4.0026 
-0.0015 
4.0010 
4.oO04 
4 .OOO1 
-0.OO01 

4.0431 

h" 5 
0.1192 
0.0249 
-0.0436 
-0.0783 
4.0833 
-0.0680 
-0.0423 
4.0149 
+0.0088 
0.0256 

0.0380 
0.0361 
0.0312 

0.0132 

0.0057 
0.0036 
0.0022 
0.0012 
0.0007 

0.0351 

0.0249 
0.0187 

0.0089 
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TBLE IV. - TEE FUNCTIONS F(y/$) and G(y/Gp) FOR THE VELOCITY 

DISTRIBUTION IN THE BOUNDARY LAYER ACCORDING TO POHLHAITSEN 

(REFERENCE 24) AND HOWARTH (REFERENCE 15) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0 
0.1981 
0.3856 

0.6976 
0.8125 
0 8976 
0.9541 
0.9856 
0.9981 
1 

0.5541 

0 

0.01725 
0.01715 
0.0144 
0.0104 

0.00315 

0.01215 

0.0064 

0.00105 
0.00015 
0 
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TABLE V. - AUXILIARY FUNCTIONS FOR THE BOUNDARY CALCULATION 

ACCORDING TO HOLSCEXR (REFERENCE 25) 

f ( K )  = E 
1 79 

f ( K )  = 5 ' s  
u u  2 K 

15 
14 
1 3  
12 
11 
10 
9 
8 
7.8 
7.6 
7.4 
7.2 _____ 
7 * 052 

0.0885 
0.0920 
0.0941 
0.6948 
0.0941 
0.0920 
0.0882 
0.0831 
0.0820 
0.0807 
0.0794 
0.0780 

-0.0657 

-0.0946 
-0.0911 
4.0806 
-0.0608 
-0.0332 
-0.0271 
-0.0203 
-0.0132 
4.0051 

-0.0814 
-0.0913 

0.345 
0.351 
0.354 
0.356 
0.354 
0.351 
0.346 
0.340 
0.338 
0.337 
0.335 
0.333 

2.279 
2.262 
2.253 
2.250 
2.253 
2.260 
2 * 273 
2.289 
2.293 
2.297 
2.301 
2.305 

0.0770 D 2.308 0.332 

7 
6.9 
6.8 
6.7 
6.6 
6.5 
6.4 
6.3 
6.2 
6.1 
6 
5 
4 
3 
2 
1 

Q .0021 
0.0061 
0.0102 
0.0144 
0.0186 
0.0230 
0.0274 
0.0319 
0.0365 
6.0412 
0 .Ob59 
0.0978 

0.3000 
0.3820 

0 * 1579 
0.2255 

2.309 

2.314 
2.312 

2.316 
2.318 
2.321 

2.326 
2.328 

2.361 

2.323 

2.331 
2.333 

2.392 
2.427 
2.466 
2.508 

0.331 
0.330 
0.330 
0.329 

0.327 
0.326 
0.325 
0.324 

0.328 

0.322 
0 . 3 ~  
0.310 
0.297 
0.283 
0.268 
0.252 

0.0767 
0.0760 
0.0752 
0.0744 
0 * 0737 
0 * 07- 
0.0721 

0.0706 
0.0697 

0.0713 

0.0689 
0 - 0599 
0.0497 

0.0264 
0.0135 

0 

0.0385 

0 0.4698 

-0.0140 
4.0284 
-0.0429 
-0 * 0575 
-0.0720 
-0.0862 
-0.0999 

. -0.1130 
-0.1255 
-0.1369 
4.1474 

2.604 
2.658 
2.716 

2.921 

3.084 
3.177 
3.276 

2.779 
2.847 

2.999 

3 * 383 

0 .97  
0.19 
0.179 
0.160 
0.140 
0.119 
0.100 
0.079 
0.059 
0 0 039 
0.019 

0.5633 
0.6616 

0.8698 

1.1981 
1.3078 

1.6251 

0.7640 

0.9780 
1 0853 

1.4173 
1.5231 

1 * 7237 

1.8159 
1.9020 
1.9821 

-1 
-2 
-3 
IC 
-5 
-6 
-7 
43 
-9 

-10 
-11 

-12 -0.1567 3 * 500 I 0 

-0.1648 
-0.1715 
-0.1767 

3.627 
3.765 
3.920 

-0.019 
-0.037 
-0.054 

-13 
-14 
-15 
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Y U  I c t 
//////////;///////////’ 

Figure 1. - Simple shear flow. 

Figure 2. - Hagen-Poiseuille’s pipe flow. 

ap 6d 
+-c 

a x  

Figure 3.- The general stress tensor. 

X 
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Figure 4.- The shearing stress (to fig. 3). 

c 

F 

Figure 5.- The deformation of a pure elongation. 

Y ’  
1 

L X  

Figure 6.- Pure angular deformation (e > 0). 
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M. x 

Figure 7.- Pure angular deformation (f > 0). 

Figure 8.- Analogy between heat boundary layer and flow boundary layer. 

x 

* t  - 

Figure 9.- Types of solutions of the Navier-Stokes differential equations. 
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Y 
# 

- 
Figure 10.- Reynolds’ law of similarity. 

Figure 11.- Laminar pipe flow. 
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.a 
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.2 
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-.2 
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-. 6 
-. 8 
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Figure 12.- Velocity profiles of the starting pipe flow ( T  =$). 
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- WU, 
Figure 13. - Velocity distribution on an oscillating surface. 
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i 
///////, 

U -u, 
Figure 14.- Velocity distribution on a surface se t  suddenly in motion. 

Figure 15. - The plane stagnation point flow. 
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Figure 16.- The velocity profile of the plane stagnation point flow- 

Figure 17.- The convergent and divergent channel. 

Figure 18. - Velocity distribution in the convergent channel. 
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. . 

Reverse flow 

Figure 19.- Velocity distribution in the divergent channel. 

Figure 20. - Separation in the divergent channel. 

Figure 21.- Viscous flow around a sphere. 
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Figure 22. - Streamline pattern of the viscous flow around a sphere 
(according to Stokes). 

Figure 23.- Streamline pattern of the viscous flow around a sphere 
(according to Oseen). 

Figure 24. - Concerning Prmdtl 's  bottn,dary-layer equation. (Boundary - 
layer thickness 6 magnified.) 
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X 
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t 

0 

Y 

t 

Figure 25.- Separation of the boundary layer. (A = point 
of separation.) 
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Y Y Y 

Figure 26.- Velocity distribution in the boundary layer for pressure 

decrease (g < 0). 

Y 

Figure 27.- Velocity distribution in the boundary layer for pressure 

increase (g > 0). 

I 

X 

Figure 28. - Concerning the cakdatiorr of the friction drag. 



NACA TM No. 1217 

Figure 29.- The boundary layer on the flat date in longitudinal flow. 

0 7 2 4 5 6 

Figure 30.- Velocity distribution u(x,y) in the boundary layer on the 
flat plate (according to Blasius). 
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Figure 31.- The transverse velocity v(x,y) in the boundary layer on 
the flat plate. 

Figure 32.- The boundary layer on a cylindrical body of arbitrary 
cross section (symmetrical case). 
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Figure 33.- The function fg’ of the velocity distribution in the 
boundary layer. 
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Circular cylinder 

141 

Arc length x 

Figure 35. - Velocity distribution of the potential 
flow for a wing profile. 

Figure 36.- Concerning the calculation of the friction layer on the 
circular cylinder. 

Y 

k 

Figure 37.- Wake flow behind the flat plate in longitudinal flow. 
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R 

Figure 38. - Concerning application of the momentum theorem for the 
flat plate in longitudinal flow. 

LO 

Figure 39.- Asymptotic velocity distribution in the wake behind the 
flat plate in longitudinal flow. 
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I 

Figure 40.- Streamline pattern and velocity distribution of the plane jet. 

Figure 41.- The velocity profile of the plane jet. 
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Figure 42.- Application of the momentum theorem for the flat plate in 
longitudinal flow. 

Figure 43.- Velocity distribution in the boundary layer on the flat plate 
in longitudinal flow. 

(a) Linear approximation. 

(b) Cubic approximation f o r  the velocity profile. 

Figure 44. - Application of the momentum theorem to the boundary layer 
with pressure gradient. 
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0 0.2 0.4 0.6 48 - Y/6P 

Figure 45. - The universal functions F(y/tjp) and G(y/s p) for the 
velocity distribution in the boundary layer according to Pohlhausen. 

0.4 

Figure 46. - 

I I I 1 

The one -parameter family of velocity profiles according 
to Pohlhausen. 



Figure 47(a).- Auxiliary functions of the boundary layer calculation 
according to Holstein (cf. table 5); A and F( K) against K . 
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Figure 47(b). - Auxiliary functions fo r  the boundary layer calculation 
according to Holstein (cf. table 5); f l (  IC) and f Z ( K  ) against IC. 
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Figure 48. - Integration of the differential equation of the boundary layer  
according to Pohlhausen and Holstein (profile J 015; ca = 0). 
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2.0 

t5 

05 

-05 

- 10 

/- 
/ 

/ 

.----_ 
I 
I 
I 
t -- -z 

Joukowsky profile d/t = 0.15 

Figure 49.- Result of the boundary-layer calculation for the example 
according to figure 48 (profile J 015; ca = 0). 
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7 2 3 
a) Stagnation point profile 

u=u, x 
- Y/6* 

1 2 3 
b) Plate profile 

u= U, 
- Y/6* 

Figure 50. - Comparison of the approximate calculation according to 
Pohlhausen with the exact solution. 
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Figure 51. - Potential-theoretical velocity distribution on the elliptic 
cylinders with axis ratio al/bl = 1, 2, 4, 8 for flow parallel to the 

major axis (A = laminar separation point), t' = half the circumference. 
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6* 
c 
- 

amr 

f 

Separation point according t 10 P4 

-5/t' 

Figure 52.- Result of the boundary-layer calculation for the elliptic 
cylinders of axis ratio al/bl  = 1, 2,4, 8. 
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Figure 54 .  - Potential-theoretical velocity distribution for the Joukowsky 
profile J 015 for c, = 0; 0.25; 0.50; 1.0. 
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Pressure side 

0- 

Figure 55.- Result of the boundary-layer calculation for the Joukowsky 
profile J 015 (t' = half the profile perimeter). 
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,s Danger of separation 

I I P ressure  

Figure 61. - Pressure distribution and separation on a wing. 

/------ 

Figure 62.- Boundary layer with laminar separation avoided. 

uo 

times no separation 

6 - - X  

Figure 63.- Potential flow with separation: U’ < 0; U” e 0; 
sometimes without separation: U’ < 0; U” > 0. 
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Figure 64. - Divergent channel. 

Figure 65.- Prevention of separation on wing by blowing. 

Figure 66.- Prevention of separation by a slotted wing. 

Figure 67.- NACA cowling for  prevention of separation. 
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Figuse 68.- Prevention of separation on wing by suction. 

Y 

h=COn5t. 

Figure 69.- Flat plate in longitudinal flow with suction. 

7 

44 
t With suction I - 

Figure 70.- Asymptotic velocity profile on flat plate in longitudinal 
* flow with suction (I) ti* = v/-v, (11) 6 = 1.73 . 

" 0  


